The growing severity of environmental problems such as plastic waste and climate change has inspired active research into solutions based on recyclable and renewable energy devices. Triboelectric nanogenerators (TENGs) that convert wasted mechanical energy into electrical energy offer a solution that needs to be made recyclable to reduce or eliminate the generation of electronic waste (e‐waste) on their disposal. In this study, an all‐recyclable TENG (AR‐TENG) based on a thermoplastic polymer with a nanohole pattern is developed; it delivers an excellent output power density of 1.547 W m−2 (peak output voltage = 360 V, current = 22 µA) and shows superior mechanochemical stability by maintaining its performance after immersion into seawater or 1 000 000 cyclic tests. The practical utility of this AR‐TENG is demonstrated through its use to power a buoy‐type ocean monitoring system and an intelligent life jacket, whereas recyclability is demonstrated by the re‐fabrication of the AR‐TENG; reusability in other devices is validated by the successful fabrication of a plasmonic color filter. This work paves the way for the efficient harvesting of renewable energy without the concomitant production of e‐waste; therefore, it contributes to the mitigation of global environmental problems such as global warming and ozone depletion.
For the purpose of stably supplying electric power to the underwater wireless sensor, the energy harvesting technology in which a voltage is obtained by generating displacement in a piezoelectric material using flow-induced vibration is one of the most attractive research fields. The funnel type energy harvester (FTEH) with PVDF proposed in this study is an energy harvester in which the inlet has a larger cross-sectional area than the outlet and a spiral structure is inserted to generate a vortex flow at the inlet. Based on numerical analysis, when PVDF with L = 100 mm and t = 1 mm was used, the electric power of 39 μW was generated at flow velocity of 0.25 m/s. In experiment the average RMS voltage of FTEH increased by 0.0209 V when the flow velocity increased by 1 m/s. When measured at 0.25 m/s flow velocity for 25 s, it was shown that voltage doubler rectifier (VDR) generated a voltage of 133.4 mV, 2.25 times larger than that of full bridge rectifier (FBR), and the energy charged in the capacitor was 44.3 nJ, 14% higher in VDR than that of the FBR. In addition, the VDR can deliver power of 17.75 μW for 1 k load. It is shown that if the voltage generated by the FTEH using the flow velocity is stored using the VDR electric circuit, it will greatly contribute to the stable power supply of the underwater wireless sensor.
Cymbal transducers are frequently used as an array rather than a single element because of their high quality factor and low energy conversion efficiency. When used as an array, cymbal transducers are likely to have a big change in their frequency characteristics due to the interaction with neighboring elements. In this study, we designed an array pattern of cymbal transducers to achieve a wide frequency bandwidth using this property. First, cymbal transducers with specific center frequencies were designed. Next, a 2 × 2 planar array was constructed with the designed transducers, where dielectric polarity directions of the transducers were divided into two cases (i.e., same and different). For the array, the effect of the difference in the center frequencies and the spacing between the transducers on the acoustic characteristics of the entire array was analyzed. Based on the results, the structural pattern of the array was optimized to have the maximum fractional bandwidth while maintaining the transmitting voltage response over a given requirement. The design validity was verified by making cymbal array prototypes, followed by measuring their performances and comparing them with that of the design.
Typical underwater acoustic sensors can measure the magnitude of an incoming sound wave but cannot identify the direction. In this paper, a new simple method for detecting the direction of a sound wave with a piezoelectric ring hydrophone is proposed. This method divides the piezoceramic ring of the hydrophone into eight elements and distinguishes the direction of the sound wave by combining the output voltages of the elements in a particular manner. The validity of the design method was confirmed through the fabrication of an experimental prototype of the ring hydrophone with the proposed structure and a comparison of its performance with the design results. The method allows the ring vector hydrophone to operate over a very wide frequency range without being restricted to its structural resonant frequencies.
In this paper we demonstrate the possibility of designing a radiator using structural-acoustic interaction by predicting the pressure distribution and radiation pattern of a structural-acoustic coupling system that is composed by a wall and two spaces. If a wall separates spaces, then the wall's role in transporting the acoustic characteristics of the spaces is important. The spaces can be categorized as bounded finite space and unbounded infinite space. The wall considered in this study composes two plates and an opening, and the wall separates one space that is highly reverberant and the other that is unbounded without any reflection. This rather hypothetical circumstance is selected to study the general coupling problem between the finite and infinite acoustic domains. We developed an equation that predicts the energy distribution and energy flow in the two spaces separated by a wall, and its computational examples are presented. Three typical radiation patterns that include steered, focused, and omnidirected are presented. A designed radiation pattern is also presented by using the optimal design algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.