We report a three-dimensional (3D) molecular orientation control of a liquid crystal organic semiconductor (LC-OSC) based on the long-range ordering characteristic of an LC material. To this end, a synthetic LC-OSC molecule, MeOPh-BTBT-C8, with a fluidic nematic (N) phase that is essential for alignment control over a large area and a smectic E (SmE) phase showing high ordering, was prepared. A simple flipping of a sandwich cell made of the LC-OSC material between the top and bottom substrates that have uniaxial–planar degenerated alignment as well as crossed rubbing directions responds to the given surface anchoring condition and temperature gradient. Optical observation of the alignment-controlled LC-OSC was carried out by polarized optical microscopy (POM), and the corresponding charge carrier mobility was also measured by fabricating organic field-effect transistors (OFETs). Our platform offers a facile approach for multidirectional and multifunctional organic electronic devices using the stimulus–response characteristics of LC materials.
We fabricate the bio-organic field-effect transistor (BOFET) with the DNA−perylene diimide (PDI) complex, which shows unusual chiroptical and electrical functionalities. DNA is used as the chirality-inducing scaffold and the charge-injection layer. The shear-oriented film of the DNA−PDI complex shows how the large-area periodic molecular orientation and the charge transport are related, generating drastically different optoelectronic properties at each DNA/PDI concentration. The resultant BOFET reveals chiral structures with a high charge carrier mobility, photoresponsivity, and photosensitivity, reaching 3.97 cm 2 V −1 s −1 , 1.18 A W −1 , and 7.76 × 10 3 , respectively. Interestingly, the BOFET enables the definitive response under the handedness of circularly polarized light with a high dissymmetry factor of approximately +0.14. This work highlights the natural chirality and anisotropy of DNA material and the electron conductivity of organic semiconducting molecules to be mutually used in significant chiro-optoelectronic functions as an added ability to the traditional OFET.
A bilayer dichroic-doped liquid crystal (BDLC) film is fabricated via the uniaxial alignment method and a photopolymerization process. It is found to be useful in dichroic color filters, dual-mode circular polarizers, and chirality detectors. Two kinds of dichroic films with different absorbing wavelengths are cross-stacked to show various colors and contrasts depending on the polarization direction of the incident linearly polarized light, which is comparable with the conventional single-layer dichroic dye-doped (SDLC) film that only shows the contrast difference. This platform can be used in many other applications beyond the applications presented in this study, such as multicolor holograms, optical signal encryption, and electrically tunable devices.
Multiscale hierarchical nano-and microstructures of amyloid fibrils are fabricated by evaporation-induced self-assembly combined with topographic surface patterning techniques. The continuous stick-and-slip motion induces uniaxial alignment of amyloid fibrils characterized by high orientational order during the drying process. The optical textures of the resultant amyloid aggregates are directly observed by polarized optical microscopy (POM) and atomic force microscopy (AFM). The resulting fiber structure can be tuned by varying the width of the topographic pattern, e.g., the microchannel width, inducing different separation between the deposited amyloid fibers on the glass substrate. Additionally, amyloid fibrils are decorated with gold nanoparticles to produce conductive microwires showing good conductivity (∼10 −3 S/m). The finely controlled deposited amyloid fibers presented here can show a way to use naturally-abundant biomaterials for practical applications such as nanowires and sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.