High-risk human papillomavirus (HPV) E7 proteins enable oncogenic transformation of HPV-infected cells by inactivating host cellular proteins. High-risk but not low-risk HPV E7 target PTPN14 for proteolytic degradation, suggesting that PTPN14 degradation may be related to their oncogenic activity. HPV infects human keratinocytes but the role of PTPN14 in keratinocytes and the consequences of PTPN14 degradation are unknown. Using an HPV16 E7 variant that can inactivate retinoblastoma tumor suppressor (RB1) but cannot degrade PTPN14, we found that high-risk HPV E7-mediated PTPN14 degradation impairs keratinocyte differentiation. Deletion of PTPN14 from primary human keratinocytes decreased keratinocyte differentiation gene expression. Related to oncogenic transformation, both HPV16 E7-mediated PTPN14 degradation and PTPN14 deletion promoted keratinocyte survival following detachment from a substrate. PTPN14 degradation contributed to high-risk HPV E6/E7-mediated immortalization of primary keratinocytes and HPV + but not HPV − cancers exhibit a gene-expression signature consistent with PTPN14 inactivation. We find that PTPN14 degradation impairs keratinocyte differentiation and propose that this contributes to high-risk HPV E7-mediated oncogenic activity independent of RB1 inactivation.H uman papillomaviruses (HPVs) are nonenveloped, doublestranded DNA viruses that infect and replicate in the stratified squamous epithelium. HPV initially infects keratinocytes in the basal, proliferative layer of the epithelium, and subsequent steps in the HPV replicative cycle-including viral genome amplification, encapsidation, and egress-are dependent on keratinocyte differentiation (1-3). However, HPV genome amplification also requires components of the cellular machinery for DNA replication that are not expressed in differentiating cells. Thus, productive HPV infection must uncouple proliferation and differentiation in the epithelium. Infection with one of the 13-15 "high-risk" HPVs causes nearly all cervical cancer, some other anogenital cancer, and an increasing proportion of HPV + head and neck squamous cell carcinomas (HNSCC) (4-6). In total, HPV infection causes ∼5% of cancers worldwide.The high-risk HPV E7 oncoprotein is able to immortalize human keratinocytes and the efficiency of immortalization is increased by high-risk HPV E6 (7-9). A well-characterized activity of many HPV E7 is to bind and inactivate the retinoblastoma tumor suppressor (RB1) via the LxCxE motif present in HPV E7 conserved region 2 (10-12). In addition, HPV16 E7 can direct the proteasome-mediated degradation of RB1 (13-16). RB1 inactivation releases the inhibition of E2F transcription factors (TF), thus allowing cell cycle progression and acting as a major driver of proliferation. HPV E7 also promotes proliferation by inhibiting the CDK inhibitors p21 WAF1/CIP1 and p27 . In addition to promoting proliferation, transcriptional studies indicate that human cells harboring high-risk HPV genomes express lower levels of differentiation marker genes and that...
Persistent human papillomavirus (HPV) infection of stratified squamous epithelial cells causes nearly five percent of cancer cases worldwide. HPV-positive oropharyngeal cancers harbor few mutations in the Hippo signaling pathway compared to HPV-negative cancers at the same anatomical site, prompting the hypothesis that an HPV-encoded protein inactivates the Hippo pathway and activates the Hippo effector YAP1. The HPV E7 oncoprotein is required for HPV infection and for HPV-mediated oncogenic transformation. We investigated the effects of HPV oncoproteins on YAP1 and found that E7 activates YAP1, promoting YAP1 nuclear localization in basal epithelial cells. YAP1 activation by HPV E7 required that E7 bind and degrade the tumor suppressor PTPN14. E7 required YAP1 transcriptional activity to extend the lifespan of primary keratinocytes, indicating that YAP1 activation contributes to E7 carcinogenic activity. Maintaining infection in basal cells is critical for HPV persistence, and here we demonstrate that YAP1 activation causes HPV E7 expressing cells to be retained in the basal compartment of stratified epithelia. We propose that YAP1 activation resulting from PTPN14 inactivation is an essential, targetable activity of the HPV E7 oncoprotein relevant to HPV infection and carcinogenesis.
Sickle cell disease is caused by a mutant form of hemoglobin that polymerizes under hypoxic conditions, increasing rigidity, fragility, calcium influx-mediated dehydration, and adhesivity of red blood cells. Increased red cell fragility results in hemolysis, which reduces nitric oxide (NO) bioavailability, and induces platelet activation and inflammation leading to adhesion of circulating blood cells. Nitric Oxide inhibits adhesion and platelet activation. Nitrite has emerged as an attractive therapeutic agent that targets delivery of NO activity to areas of hypoxia through bioactivation by deoxygenated red blood cell hemoglobin. In this study, we demonstrate anti-platelet activity of nitrite at doses achievable through dietary interventions with comparison to similar doses with other NO donating agents. Unlike other NO donating agents, nitrite activity is shown to be potentiated in the presence of red blood cells in hypoxic conditions. We also show that nitrite reduces calcium associated loss of phospholipid asymmetry that is associated with increased red cell adhesion, and that red cell deformability is also improved. We show that nitrite inhibits red cell adhesion in a microfluidic flow-channel assay after endothelial cell activation. In further investigations, we show that leukocyte and platelet adhesion is blunted in nitrite-fed wild type mice compared to control after either lipopolysaccharide- or hemolysis-induced inflammation. Moreover, we demonstrate that nitrite treatment results in a reduction in adhesion of circulating blood cells and reduced red blood cell hemolysis in humanized transgenic sickle cell mice subjected to local hypoxia. These data suggest that nitrite is an effective anti-platelet and anti-adhesion agent that is activated by red blood cells, with enhanced potency under physiological hypoxia and in venous blood that may be useful therapeutically.
The relationships between the ionization profile, sensitivity, and structures of 64 exogenous anabolic steroids (groups I-IV) was investigated under electrospray ionization (ESI) conditions. The target analytes were ionized as [M + H](+) or [M + H-nH2 O](+) in the positive mode, and these ions were used as precursor ions for selected reaction monitoring analysis. The collision energy and Q3 ions were optimized based on the sensitivity and selectivity. The limits of detection (LODs) were 0.05-20 ng/mL for the 64 steroids. The LODs for 38 compounds, 14 compounds and 12 compounds were in the range of 0.05-1, 2-5 and 10-20 ng/mL, respectively. Steroids including the conjugated keto-functional group at C3 showed good proton affinity and stability, and generated the [M + H](+) ion as the most abundant precursor ion. In addition, the LODs of steroids using the [M + H](+) ion as the precursor ion were mostly distributed at low concentrations. In contrast, steroids containing conjugated/unconjugated hydroxyl functional groups at C3 generated [M + H - H2 O](+) or [M + H - 2H2 O](+) ions, and these steroids showed relatively high LODs owing to poor stability and multiple ion formation. An LC-MS/MS method based on the present ionization profile was developed and validated for the determination of 78 steroids (groups I-V) in human urine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.