Brown adipose tissue (BAT) is a thermogenic organ that dissipates chemical energy as heat to protect animals against hypothermia and to counteract metabolic disease1. However, the transcriptional mechanisms that determine BAT thermogenic capacity prior to environmental cold are unknown. Here we show that Histone Deacetylase 3 (HDAC3) is required to activate BAT enhancers to ensure thermogenic aptitude. Mice with BAT-specific genetic ablation of HDAC3 become severely hypothermic and succumb to acute cold exposure. UCP1 is nearly absent in BAT lacking HDAC3 and there is also marked down-regulation of mitochondrial oxidative phosphorylation (OXPHOS) genes resulting in diminished mitochondrial respiration. Remarkably, although HDAC3 acts canonically as a transcriptional corepressor2, it functions as a coactivator of Estrogen-Related Receptor α (ERRα) in BAT. HDAC3 coactivation of ERRα is mediated by deacetylation of PGC-1α and is required for the transcription of Ucp1, Pgc-1α and OXPHOS genes. Importantly, HDAC3 promotes the basal transcription of these genes independent of adrenergic stimulation. Thus, HDAC3 uniquely primes Ucp1 and the thermogenic transcriptional program to maintain a critical capacity for thermogenesis in BAT that can be rapidly engaged upon exposure to dangerously cold temperature.
The projection neurons of the striatum, the principal nucleus of the basal ganglia, belong to one of the following two major pathways: the striatopallidal (indirect) pathway or the striatonigral (direct) pathway. Striatonigral axons project long distances and encounter ascending tracts (thalamocortical) while coursing alongside descending tracts (corticofugal) as they extend through the internal capsule and cerebral peduncle. These observations suggest that striatal circuitry may help to guide their trajectories. To investigate the developmental contributions of striatonigral axons to internal capsule formation, we have made use of Sox8-EGFP (striatal direct pathway) and Fezf2-TdTomato (corticofugal pathway) BAC transgenic reporter mice in combination with immunohistochemical markers to trace these axonal pathways throughout development. We show that striatonigral axons pioneer the internal capsule and cerebral peduncle and are temporally and spatially well positioned to provide guidance for corticofugal and thalamocortical axons. Using Isl1 conditional knock-out (cKO) mice, which exhibit disrupted striatonigral axon outgrowth, we observe both corticofugal and thalamocortical axon defects with either ventral forebrain-or telencephalon-specific Isl1 inactivation, despite Isl1 not being expressed in either cortical or thalamic projection neurons. Striatonigral axon defects can thus disrupt internal capsule formation. Our genome-wide transcriptomic analysis in Isl1 cKOs reveals changes in gene expression relevant to cell adhesion, growth cone dynamics, and extracellular matrix composition, suggesting potential mechanisms by which the striatonigral pathway exerts this guidance role. Together, our data support a novel pioneering role for the striatal direct pathway in the correct assembly of the ascending and descending axon tracts within the internal capsule and cerebral peduncle.
Homeodomain proteins constitute one of the largest families of metazoan transcription factors. Genetic studies have demonstrated that homeodomain proteins regulate many developmental processes. Yet, biochemical data reveal that most bind highly similar DNA sequences. Defining how homeodomain proteins achieve DNA binding specificity has therefore been a long-standing goal. Here, we developed a novel computational approach to predict cooperative dimeric binding of homeodomain proteins using High-Throughput (HT) SELEX data. Importantly, we found that 15 of 88 homeodomain factors form cooperative homodimer complexes on DNA sites with precise spacing requirements. Approximately one third of the paired-like homeodomain proteins cooperatively bind palindromic sequences spaced 3 bp apart, whereas other homeodomain proteins cooperatively bind sites with distinct orientation and spacing requirements. Combining structural models of a paired-like factor with our cooperativity predictions identified key amino acid differences that help differentiate between cooperative and non-cooperative factors. Finally, we confirmed predicted cooperative dimer sites in vivo using available genomic data for a subset of factors. These findings demonstrate how HT-SELEX data can be computationally mined to predict cooperativity. In addition, the binding site spacing requirements of select homeodomain proteins provide a mechanism by which seemingly similar AT-rich DNA sequences can preferentially recruit specific homeodomain factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.