Pepper ( Capsicum annuum L.) is an important agricultural crop worldwide. Recently, Colletotrichum scovillei , a member of the C. acutatum species complex, was reported to be the dominant pathogen causing pepper anthracnose disease in South Korea. In the present study, we isolated bacterial strains from rhizosphere soil in a pepper field in Gangwon Province, Korea, and assessed their antifungal ability against C. scovillei strain KC05. Among these strains, a strain named BS1 significantly inhibited mycelial growth, appressorium formation, and disease development of C. scovillei . By combined sequence analysis using 16S rRNA and partial gyrA sequences, strain BS1 was identified as Bacillus velezensis , a member of the B. subtilis species complex. BS1 produced hydrolytic enzymes (cellulase and protease) and iron-chelating siderophores. It also promoted chili pepper (cv. Nockwang) seedling growth compared with untreated plants. The study concluded that B. velezensis BS1 has good potential as a biocontrol agent of anthracnose disease in chili pepper caused by C. scovillei .
Colletotrichum scovillei is the major anthracnose fungus of sweet pepper and chili pepper (Capsicum annuum L.), causing significant losses in the yield and quality of the pepper fruits. Molecular mechanisms governing development and pathogenicity have been widely studied in many foliar fungal pathogens, but the information on fruit diseases is still limited. In this study, we determined the functional roles of the dual-specificity tyrosine phosphorylation-regulated kinase CsPOM1 in C. scovillei. Knockout mutant for CsPOM1 gene was obtained via homology-dependent gene replacement. The ΔCspom1 mutant exhibited a reduction in vegetative growth on osmotic stress, surface hydrophobicity, and conidiation compared with wild-type. Conidia of the ΔCspom1 mutant were already two-celled before inoculation on an induction surface, indicating that CsPOM1 negatively regulates conidial cell division. The ΔCspom1 mutant, similar to wild-type, formed appressoria on the plant surface, but was significantly reduced on hydrophobic coverslips, probably due to a defect in the recognition of surface hydrophobicity. Treatment of conidia with cutin monomers restored appressorium formation on hydrophobic coverslips in the ΔCspom1 mutant. On pepper fruits, the ΔCspom1 mutant exhibited delayed penetration and invasive growth, leading to significantly reduced virulence. Collectively, the results showed that CsPOM1 is important for stress tolerance, conidiation, surface hydrophobicity, appressorium formation, and virulence in C. scovillei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.