The use of antibiotics is strongly associated with antimicrobial resistance. E. coli isolates from different sources may select a specific gene cassette by antibiotic selective pressure, which results in differences in class 1 integrons. The horizontal transfer of class 1 integrons through conjugative plasmids seems to be responsible for wide dissemination of a particular type of class 1 integron.
TXA decreased epidermal pigmentation associated with melasma and also reversed melasma-related dermal changes, such as vessel number and increased numbers of mast cells.
Melasma is a frequent pigmentary disorder caused by abnormal melanin deposits in the skin. In vivo reflectance confocal microscopy (RCM) is a repetitive imaging tool that provides real-time images of the skin at nearly histological resolution. As melanin is the strongest endogenous contrast in human skin, pigmentary disorders are the most suitable candidates for RCM examination but RCM features of melasma have never been reported. This study investigates the pilot use of RCM in melasma to provide a set of well-described morphological criteria with histological correlations. RCM images were acquired from melasma skin and compared to adjacent control skin in 26 patients. Skin biopsies were obtained from eight patients. In the epidermis, RCM showed in all patients a significant increase in hyperrefractile cobblestoning cells. These cells corresponded to hyperpigmented basal keratinocytes in histology. In six patients, dendritic cells corresponding to activated melanocytes were also found in the epidermis. In the dermis, RCM identified in nine patients plump bright cells corresponding to melanophages. Interestingly, for a given patient, the topographic distribution of melanophages in melasma lesions was very heterogeneous. RCM also showed a significant increase in solar elastosis and blood vessels in the dermis. RCM is a non-invasive technique that detects pigmentary changes in melasma at a cellular level resolution. Therefore, RCM provides an innovative way to classify melasma by pigment changes.
Increasing evidence on the impact of the different wavelengths of sunlight on the skin demonstrates the need for tailored recommendations of sunscreen according to skin phototype and dermatoses, which is now possible due to advances in the filters and formulations of sunscreens. A selective literature search was performed by an international expert panel, focusing on the type of sunscreen to recommend for photoaging, skin cancers, photodermatoses, pigmentary disorders and skin inflammatory disorders. Protection against ultraviolet (UV)B is especially important for light skin as there is a high risk of sunburn, DNA damage and skin cancers. Darker skin may be naturally better protected against UVB but is more prone to hyperpigmentation induced by visible light (VL) and UVA. Protection against UVA, VL and infrared A can be helpful for all skin phototypes as they penetrate deeply and cause photoaging. Long‐wave UVA1 plays a critical role in pigmentation, photoaging, skin cancer, DNA damage and photodermatoses. Adapting the formulation and texture of the sunscreen to the type of skin and dermatoses is also essential. Practical recommendations on the type of sunscreen to prescribe are provided to support the clinician in daily practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.