MicroRNAs (miRNAs) are a class of small noncoding RNAs that have gained status as important regulators of gene expression. Here, we investigated the function and molecular mechanisms of the miR-208 family of miRNAs in adult mouse heart physiology. We found that miR-208a, which is encoded within an intron of α-cardiac muscle myosin heavy chain gene (Myh6), was actually a member of a miRNA family that also included miR-208b, which was determined to be encoded within an intron of β-cardiac muscle myosin heavy chain gene (Myh7). These miRNAs were differentially expressed in the mouse heart, paralleling the expression of their host genes. Transgenic overexpression of miR-208a in the heart was sufficient to induce hypertrophic growth in mice, which resulted in pronounced repression of the miR-208 regulatory targets thyroid hormone-associated protein 1 and myostatin, 2 negative regulators of muscle growth and hypertrophy. Studies of the miR-208a Tg mice indicated that miR-208a expression was sufficient to induce arrhythmias. Furthermore, analysis of mice lacking miR-208a indicated that miR-208a was required for proper cardiac conduction and expression of the cardiac transcription factors homeodomain-only protein and GATA4 and the gap junction protein connexin 40. Together, our studies uncover what we believe are novel miRNA-dependent mechanisms that modulate cardiac hypertrophy and electrical conduction.
MicroRNAs (miRNAs) are a recently discovered class of ∼22-nucleotide regulatory RNAs that posttranscriptionally regulate gene expression. We have recently demonstrated that muscle-specific miRNAs miR-1 and -133 play an important role in modulating muscle proliferation and differentiation. Here, we investigate the involvement of miRNAs in cardiac hypertrophy. We analyzed the global expression of miRNAs in agonist-induced hypertrophic cardiomyocytes as well as in pressure overload-induced hypertrophic hearts and found the miRNA expression profile altered in those hypertrophic conditions. We further show that inhibition of endogenous miR-21 or -18b augments hypertrophic growth. Conversely, introduction of functional miR-21 or -18b into cardiomyocytes represses myocyte hypertrophy. Together, our studies point to miRNAs as critical regulators of cardiac hypertrophy.
Rationale Cardiomyocytes in adult mammalian hearts are terminally differentiated cells that have exited from the cell cycle and lost most of their proliferative capacity. Death of mature cardiomyocytes in pathological cardiac conditions and the lack of regeneration capacity of adult hearts are primary causes of heart failure and mortality. However, how cardiomyocyte proliferation in postnatal and adult hearts becomes suppressed remains largely unknown. The miR-17-92 cluster was initially identified as a human oncogene that promotes cell proliferation. However, its role in the heart remains unknown. Objective To test the hypothesis that miR-17-92 participates in the regulation of cardiomyocyte proliferation in postnatal and adult hearts. Methods and Results We deleted miR-17-92 cluster from embryonic and postnatal mouse hearts and we demonstrated that miR-17-92 is required for cardiomyocyte proliferation in the heart. Transgenic overexpression of miR-17-92 in cardiomyocytes is sufficient to induce cardiomyocyte proliferation in embryonic, postnatal and adult hearts. Moreover, overexpression of miR-17-92 in adult cardiomyocytes protects the heart from myocardial infarction-induced injury. Similarly, we found that members of miR-17-92 cluster, miR-19 in particular, are required for and sufficient to induce cardiomyocyte proliferation in vitro. We identified PTEN, a tumor suppressor, as a miR-17-92 target to mediate the function of miR-17-92 in cardiomyocyte proliferation. Conclusions Our studies therefore identify miR-17-92 as a critical regulator of cardiomyocyte proliferation and suggest this cluster of miRNAs could become therapeutic targets for cardiac repair and heart regeneration.
Rationale The adult heart is composed primarily of terminally differentiated, mature cardiomyocytes that express signature genes related to contraction. In response to mechanical or pathological stress, the heart undergoes hypertrophic growth, a process defined as an increase in cardiomyocyte cell size without an increase in cell number. However, the molecular mechanism of cardiac hypertrophy is not fully understood. Objective To identify and characterize microRNAs that regulate cardiac hypertrophy and remodeling. Methods and Results Screening for muscle-expressed microRNAs that are dynamically regulated during muscle differentiation and hypertrophy identified microRNA-22 (miR-22) as a cardiac- and skeletal muscle–enriched microRNA that is upregulated during myocyte differentiation and cardiomyocyte hypertrophy. Overexpression of miR-22 was sufficient to induce cardiomyocyte hypertrophy. We generated mouse models with global and cardiac-specific miR-22 deletion, and we found that cardiac miR-22 was essential for hypertrophic cardiac growth in response to stress. miR-22–null hearts blunted cardiac hypertrophy and cardiac remodeling in response to 2 independent stressors: isoproterenol infusion and an activated calcineurin transgene. Loss of miR-22 sensitized mice to the development of dilated cardiomyopathy under stress conditions. We identified Sirt1 and Hdac4 as miR-22 targets in the heart. Conclusions Our studies uncover miR-22 as a critical regulator of cardiomyocyte hypertrophy and cardiac remodeling.
Rationale In response to mechanical and/or pathological stress, adult mammalian hearts often undergo mal-remodeling, a process commonly characterized as pathological hypertrophy, which is associated with upregulation of fetal genes, increased fibrosis, and reduction of cardiac dysfunction. The molecular pathways that regulate this process are not fully understood. Objective To explore the function of microRNA-155 (miR-155) in cardiac hypertrophy and remodeling. Methods and Results Our previous work identified miR-155 as a critical microRNA that repressed the expression and function of the myocyte enhancer factor 2A (MEF2A). In this study, we found that miR-155 is expressed in cardiomyocytes and that its expression is reduced in pressure overload-induced hypertrophic hearts. In mouse models of cardiac hypertrophy, miR-155 null hearts suppressed cardiac hypertrophy and cardiac remodeling in response to two independent pathological stressors – transverse aortic restriction (TAC) and an activated calcineurin (CnA) transgene. Most importantly, loss of miR-155 prevents the progress of heart failure and substantially extends the survival of CnA transgenic mice. The function of miR-155 in hypertrophy is confirmed in isolated cardiomyocytes. We identified Jarid2/jumonji as a miR-155 target in the heart. miR-155 directly represses Jarid2, whose expression is increased in miR-155 null hearts. Inhibition of endogenous Jarid2 partially rescues the effect of miR-155 loss in isolated cardiomyocytes. Conclusions Our studies uncover miR-155 as an inducer of pathological cardiomyocyte hypertrophy and suggest that inhibition of endogenous miR-155 might have clinical potential to suppress cardiac hypertrophy and heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.