Owing to the improved representation ability, recent deep learning-based methods enable to estimate scene depths accurately. However, these methods still have difficulty in estimating consistent scene depths under real-world environments containing severe illumination changes, occlusions, and texture-less regions. To solve this problem, in this paper, we propose a novel depth-estimation method for unstructured multi-view images. Accordingly, we present a plane sweep generative adversarial network, where the proposed adversarial loss significantly improves the depth-estimation accuracy under real-world settings, and the consistency loss makes the depth-estimation results insensitive to the changes in viewpoints and the number of input images. In addition, 3D convolution layers are inserted into the network to enrich feature representation. Experimental results indicate that the proposed plane sweep generative adversarial network quantitatively and qualitatively outperforms state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.