There is growing interest in automating designing good neural network architectures. The NAS methods proposed recently have significantly reduced the architecture search cost by sharing parameters, but there is still a challenging problem in designing search space. The existing operation-level architecture search methods require a large amount of computing power or designing the search space of operations very carefully. In this paper, we investigate the possibility of achieving competitive performance with them only using a small amount of computing power and without designing search space carefully. We propose TENAS using Taylor expansion and only a fixed type of operation. The resulting architecture is sparse in terms of channel and has different topology at different cells. The experimental results for CIFAR-10 and ImageNet show that a fine-granular and sparse model searched by TENAS achieves very competitive performance with dense models searched by the existing methods.INDEX TERMS Neural architecture search, convolutional neural network, deep learning.
Despite recent advances in deep neural networks (DNNs), multi-task learning has not been able to utilize DNNs thoroughly. The current method of DNN design for a single task requires considerable skill in deciding many architecture parameters a priori before training begins. However, extending it to multi-task learning makes it more challenging. Inspired by findings from neuroscience, we propose a unified DNN modeling framework called ConnectomeNet that encompasses the best principles of contemporary DNN designs and unifies them with transfer, curriculum, and adaptive structural learning, all in the context of multi-task learning. Specifically, ConnectomeNet iteratively resembles connectome neuron units with a high-level topology represented as a general-directed acyclic graph. As a result, ConnectomeNet enables non-trivial automatic sharing of neurons across multiple tasks and learns to adapt its topology economically for a new task. Extensive experiments, including an ablation study, show that ConnectomeNet outperforms the state-of-the-art methods in multi-task learning such as the degree of catastrophic forgetting from sequential learning. For the degree of catastrophic forgetting, with normalized accuracy, our proposed method (which becomes 100%) overcomes mean-IMM (89.0%) and DEN (99.97%).INDEX TERMS adaptive learning, dynamic network expansion, multi-task learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.