Object tracking has long been an active research topic in image processing and computer vision fields with various application areas. For practical applications, the object tracking technique should be not only accurate but also fast in a real-time streaming condition. Recently, deep feature-based trackers have been proposed to achieve a higher accuracy, but those are not suitable for real-time tracking because of an extremely slow processing speed. The slow speed is a major factor to degrade tracking accuracy under a real-time streaming condition since the processing delay forces skipping frames. To increase the tracking accuracy with preserving the processing speed, this paper presents an improved kernelized correlation filter (KCF)-based tracking method that integrates three functional modules: (i) tracking failure detection, (ii) re-tracking using multiple search windows, and (iii) motion vector analysis to decide a preferred search window. Under a real-time streaming condition, the proposed method yields better results than the original KCF in the sense of tracking accuracy, and when a target has a very large movement, the proposed method outperforms a deep learning-based tracker, such as multi-domain convolutional neural network (MDNet).
In spite of excellent performance of deep learning-based computer vision algorithms, they are not suitable for real-time surveillance to detect abnormal behavior because of very high computational complexity. In this paper, we propose a real-time surveillance system for abnormal behavior analysis in a closed-circuit television (CCTV) environment by constructing an algorithm and system optimized for a CCTV environment. The proposed method combines pedestrian detection and tracking to extract pedestrian information in real-time, and detects abnormal behaviors such as intrusion, loitering, fall-down, and violence. To analyze an abnormal behavior, it first determines intrusion/loitering through the coordinates of an object and then determines fall-down/violence based on the behavior pattern of the object. The performance of the proposed method is evaluated using an intelligent CCTV data set distributed by Korea Internet and Security Agency (KISA).
This paper presents a novel hybrid sensor-based intrusion detection system for low-power surveillance in an empty, sealed indoor space with or without illumination. The proposed system includes three functional steps: (i) initial detection of an intrusion event using a sound field sensor; (ii) automatic lighting control based on the detected event, and (iii) detection and tracking the intruder using an image sensor. The proposed hybrid sensor-based surveillance system uses a sound field sensor to detect an abnormal event in a very low-light or completely dark environment for 24 h a day to reduce the power consumption. After detecting the intrusion by the sound sensor, a collaborative image sensor takes over an accurate detection and tracking tasks. The proposed hybrid system can be applied to various surveillance environments such as an office room after work, empty automobile, safety room in a bank, and armory room. This paper deals with fusion of computer-aided pattern recognition and physics-based sound field analysis that reflects the symmetric aspect of computer vision and physical analysis
In this paper, we present a coarse-to-fine convolutional neural network (CF-CNN) for learning multilabel classes. The basis of the proposed CF-CNN is a disjoint grouping method that first creates a class group with hierarchical association, and then assigns a new label to a class belonging to each group so that each class acquires multiple labels. CF-CNN consists of one main network and two subnetworks. Each subnetwork performs coarse prediction using the group labels created by the disjoint grouping method. The main network includes a refine convolution layer and performs fine prediction to fuse the feature maps acquired from the subnetwork. The generated class set in the upper level has the same classification boundary to that in the lower level. Since the classes belonging to the upper level label are classified with a higher priority, parameter optimization becomes easier. In experimental results, the proposed method is applied to various classification tasks to show a higher classification accuracy by up to 3% with a much smaller number of parameters without modification of the baseline model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.