In practice, many autonomous vehicle developers put a tremendous amount of time and efforts in tuning and calibrating the path tracking controllers in order to achieve robust tracking performance and smooth steering actions over a wide range of vehicle speed and road curvature changes. This design process becomes tiresome when the target vehicle changes frequently. In this study, a model-based Linear Quadratic Gaussian (LQG) Control with adaptive Q-matrix is proposed to efficiently and systematically design the path tracking controller for any given target vehicle while effectively handling the noise and error problems arise from the localization and path planning algorithms. The regulator, in turn, is automatically designed, without additional efforts for tuning at various speeds. The performance of the proposed algorithm is validated based on KAIST autonomous vehicle. The experimental results show that the proposed LQG with adaptive Q-matrix has tracking performance in both low (15kph) and high (45kph) speed driving conditions better than those of other conventional tracking methods like the Stanley and Pure-pursuit methods. INDEX TERMS Autonomous vehicle, intelligent vehicle, linear quadratic Gaussian (LQG) control, lookahead distance, path tracking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.