Becn1/Beclin-1 is a core component of the class III phosphatidylinositol 3-kinase required for autophagosome formation and vesicular trafficking. Although Becn1 has been implicated in numerous diseases such as cancer, aging, and neurodegenerative disease, the role of Becn1 in white adipose tissue and related metabolic diseases remains elusive. In this study, we show that adipocyte-specific Becn1 knockout mice develop severe lipodystrophy, leading to adipose tissue inflammation, hepatic steatosis, and insulin resistance. Ablation of Becn1 in adipocytes stimulates programmed cell death in a cell-autonomous manner, accompanied by elevated endoplasmic reticulum (ER) stress gene expression. Furthermore, we observed that Becn1 depletion sensitized mature adipocytes to ER stress, leading to accelerated cell death. Taken together, these data suggest that adipocyte Becn1 would serve as a crucial player for adipocyte survival and adipose tissue homeostasis.
Of the various cell types in the tumor microenvironment (TME), adipocytes undergo a dynamic transformation when activated by neighboring cancer cells. Although these adipocytes, known as cancer-associated adipocytes (CAAs), have been reported to play a crucial role in tumor progression, the factors that mediate their transformation remain elusive. In this review, we discuss the hypothesis that inflammatory signals involving NF-ĸB activation can induce lipolysis and adipocyte dedifferentiation. This provides a mechanistic understanding of CAA formation and introduces the concept of preventing adipocyte transformation via anti-inflammatory agents. Indeed, epidemiological studies indicate a higher efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) in obese patients with cancer, suggesting that NSAIDs can modulate the TME. Inhibition of cyclooxygenase-2 (COX-2) and prostaglandin production leads to the suppression of inflammatory signals such as NF-ĸB. Thus, we suggest the use of NSAIDs in cancer patients with metabolic disorders to prevent the transformation of TME components. Moreover, throughout this review, we attempt to expand our knowledge of CAA transformation to improve the clinical feasibility of targeting CAAs.
PIERCE1, p53 induced expression 1 in Rb null cells, is a novel p53 target involved in the DNA damage response and cell cycle in mice. These facts prompted us to study the function of PIERCE1 with respect to p53-associated pathophysiology of cancer in humans. Unexpectedly, PIERCE1 did not respond to overexpression and activation of p53 in humans. In this study, we swapped p53 protein expression in human and mouse cells to find the clue of this difference between species. Human p53 expression in mouse cells upregulated PIERCE1 expression, suggesting that p53-responsive elements on the PIERCE1 promoter are crucial, but not the p53 protein itself. Indeed, in silico analyses of PIERCE1 promoters revealed that p53-responsive elements identified in mice are not conserved in humans. Consistently, chromatin immunoprecipitation-sequencing (ChIP-seq) analyses confirmed p53 enrichment against the PIERCE1 promoter region in mice, not in human cells. To complement the p53 study in mice, further promoter analyses suggested that the human PIERCE1 promoter is more similar to guinea pigs, lemurs, and dogs than to rodents. Taken together, our results confirm the differential responsiveness of PIERCE1 expression to p53 due to species differences in PIERCE1 promoters. The results also show partial dissimilarity after p53 induction between mice and humans.
Adipocytes are crucial components of the tumor microenvironment (TME) that play a prominent role in supporting tumor growth. However, the characteristics of cancer-associated adipocytes (CAAs) that contribute to the pro-tumorigenic niche remain to be fully established. Here, we used adipocyte-specific Beclin1 KO (BaKO) mice to investigate the role of maladaptive adipocytes in promoting tumor progression. BECN1-deficient adipocytes exhibited downregulation of adipogenic markers and activation of YAP/TAZ signaling, similar to the traits observed in CAAs. Thus, we generated adipocyte-specific Becn1/Yap1/Taz KO mice, which exhibit markedly restored phenotypes in adipose tissue, resulting in tumor regression compared to that in BaKO. Further, we observed dysregulation of the BECN1-YAP/TAZ axis in the adipose tissue of mice fed a high-fat diet (HFD). Treatment with the YAP/TAZ inhibitor, verteporfin, suppressed tumor progression in BaKO and HFD-fed mice, highlighting its efficacy against mice with metabolic dysregulation. Our findings provide insights into CAA formation and its significance in determining malignant TME, thereby suggesting a potential dual therapeutic strategy simultaneously targeting adipocyte homeostasis and cancer growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.