Methanogenesis and sulfidogenesis, the major microbial reduction reactions occurring in the anaerobic digestion (AD) process, compete for common substrates. Therefore, the balance between methanogenic and sulfidogenic activities is important for efficient biogas production. In this study, changes in methanogenic and sulfidogenic performances in response to changes in organic loading rate (OLR) were examined in two digesters treating sulfur-rich macroalgal waste under mesophilic and thermophilic conditions, respectively. Both methanogenesis and sulfidogenesis were largely suppressed under thermophilic relative to mesophilic conditions, regardless of OLR. However, the suppressive effect was even more significant for sulfidogenesis, which may suggest an option for H 2 S control. The reactor microbial communities developed totally differently according to reactor temperature, with the abundance of both methanogens and sulfate-reducing bacteria being significantly higher under mesophilic conditions. In both reactors, sulfidogenic activity increased with increasing OLR. The findings of this study help to understand how temperature affects sulfidogenesis and methanogenesis during AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.