Biofouling is one of the main drawbacks of membrane bioreactors (MBRs). Among the different methods, the quorum-quenching (QQ) technique is a novel method as it delays biofilm formation on the membrane surface through disruption of bacterial cell-to-cell communication and thus effectively mitigates membrane biofouling. QQ bacteria require a certain concentration of dissolved oxygen to show their best activities. Despite the importance of the amount of aeration, there have not been enough studies on aeration condition utilizing the separate determination of pure QQ effect and physical cleaning effect. This research aimed to find the optimum aeration intensity by separation of the two effects from QQ and physical cleaning. Three bead type conditions (no bead, vacant bead, and QQ beads) at three aeration intensities (1.5, 2.5, and 3.5 L/min representing low, medium, and high aeration intensity) were applied. From the results, no QQ effect and small QQ effect were observed at low and high aeration, while the greatest QQ effect (48.2% of 737 h improvement) was observed at medium aeration. The best performance was observed at high aeration with QQ beads having a 1536 h operational duration (303% improvement compared to the no bead condition); however, this excellent performance was attributed more to the physical cleaning effect than to the QQ effect.
Adsorption of clofibric acid (CA) and propyphenazone (PPZ) to virgin granular activated carbon (GAC) and preloaded GAC was evaluated in the absence or presence of natural organic matter (NOM). In spite of lower log K ow , PPZ showed higher selectivity to GAC than CA, which has a carboxylic group. Adsorption competition between CA and PPZ in binary solutes system decreased the amount of individual compound adsorbed to GAC. Adsorption isotherm data obtained in the presence of NOM showed that NOM in bulk solution or preloaded on GAC could significantly reduce the amounts of CA and PPZ adsorbed to GAC.
Fouling mechanisms associated with membrane-based polysaccharide enrichment were determined using a dense ultrafiltration (UF) membrane. Dextran with different molecular weights (MWs) was used as a surrogate for polysaccharides. The influence of dextran MW on fouling mechanisms was quantified using the Hermia model. Flux data obtained with different dextran MWs and filtration cycles were plotted to quantify the more appropriate fouling mechanisms among complete pore blocking, standard pore blocking, intermediate pore blocking, and cake filtration. For 100,000 Da dextran, all four mechanisms contributed to the initial fouling. As the filtration progressed, the dominant fouling mechanism appeared to be cake filtration with a regression coefficient (R2) of approximately 0.9519. For 10,000 Da, the R2 value for cake filtration was about 0.8767 in the initial filtration. Then, the R2 value gradually decreased as the filtration progressed. For 6000 Da, the R2 values of the four mechanisms were very low in the initial filtration. However, as the filtration progressed, the R2 value for cake filtration reached 0.9057. These results clearly show that the fouling mechanism of dense UF membranes during polysaccharide enrichment can be quantified. In addition, it was confirmed that the dominant fouling mechanism can change with the size of the polysaccharide and the duration of filtration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.