The current standard of treatment against tuberculosis consists of a cocktail of first-line drugs, including isoniazid and pyrazinamide. Although these drugs are known to be bactericidal, contribution of host cell responses in the context of antimycobacterial chemotherapy, if any, remains unknown. We demonstrate that isoniazid and pyrazinamide promote autophagy activation and phagosomal maturation in Mycobacterium tuberculosis (Mtb)-infected host cells. Treatment of Mtb-infected macrophages with isoniazid or pyrazinamide caused significant activation of cellular and mitochondrial reactive oxygen species and autophagy, which was triggered by bacterial hydroxyl radical generation. Mycobacterium marinum-infected autophagy-defective, atg7 mutant Drosophila exhibited decreased survival rates, which could not be rescued by antimycobacterial treatment, indicating that autophagy is required for effective antimycobacterial drug action in vivo. Moreover, activation of autophagy by antibiotic treatment dampened Mtb-induced proinflammatory responses in macrophages. Together, these findings underscore the importance of host autophagy in orchestrating successful antimicrobial responses to mycobacteria during chemotherapy.
Aminoglycosides are key drugs for the treatment of multidrug-resistant tuberculosis. A total of 97 extensively drug-resistant (XDR) and 29 pan-susceptible Mycobacterium tuberculosis isolates from Korean tuberculosis patients were analyzed to characterize mutations within the rrs, rpsL, gidB, eis and tlyA genes. Thirty (56.6 %) of the 53 streptomycin (STR)-resistant strains had a rpsL mutation and eight strains (15.1 %) had a rrs (514 or 908 site) mutation, whereas 11 (20.8 %) of the 53 STR-resistant strains had a gidB mutation without rpsL or either rrs mutation. Most of the gidB mutations conferred low-level STR resistance, and 22 of these mutations were novel. Mutation at position 1401 in rrs lead to resistance to kanamycin (80/95 = 84.2 %; KAN), amikacin (80/87 = 92.0 %; AMK), and capreomycin (74/86 = 86.0 %; CAP). In this study, 13.7 % (13/95) of KAN-resistant strains showed eis mutations, including 4 kinds of novel mutations. Isolates with eis structural gene mutations were cross-resistant to STR, KAN, CAP, and AMK. Here, 5.8 % (5/86) of the CAP-resistant strains harbored a tlyA mutation that included 3 different novel point mutations. Detection of the A1401G mutation appeared to be 100 % specific for the detection of resistance to KAN and AMK. These data establish the presence of phenotypic XDR strains using molecular profiling and are helpful to understanding of aminoglycoside resistance at the molecular level.
Mycobacterium massiliense (Mmass) is an emerging, rapidly growing mycobacterium (RGM) that belongs to the M. abscessus (Mabc) group, albeit clearly differentiated from Mabc. Compared with M. tuberculosis, a well-characterized human pathogen, the host innate immune response against Mmass infection is largely unknown. In this study, we show that Mmass robustly activates mRNA and protein expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in murine bone marrow-derived macrophages (BMDMs). Toll-like receptor (TLR)-2 and myeloid differentiation primary response gene 88 (MyD88), but neither TLR4 nor Dectin-1, are involved in Mmass-induced TNF-α or IL-6 production in BMDMs. Mmass infection also activates the mitogen-activated protein kinase (MAPKs; c-Jun N-terminal kinase (JNK), ERK1/2 and p38 MAPK) pathway. Mmass-induced TNF-α and IL-6 production was dependent on JNK activation, while they were unaffected by either the ERK1/2 or p38 pathway in BMDMs. Additionally, intracellular reactive oxygen species (ROS), NADPH oxidase-2, and nuclear factor-κB are required for Mmass-induced proinflammatory cytokine generation in macrophages. Furthermore, the S morphotype of Mmass showed lower overall induction of pro-inflammatory (TNF-α, IL-6, and IL-1β) and anti-inflammatory (IL-10) cytokines than the R morphotype, suggesting fewer immunogenic characteristics for this clinical strain. Together, these results suggest that Mmass-induced activation of host proinflammatory cytokines is mediated through TLR2-dependent JNK and ROS signaling pathways.
Mycobacterium abscessus (Mabc) is an emerging human pathogen. Less is known about the host immune response to Mabc than to M. tuberculosis. Here, we examined the intracellular signaling pathways that govern the expression of chemokines including (C-C motif) ligand 2 (CCL2) and (C-X-C motif) ligand 2 (CXCL2) in macrophages after infection with Mabc. Specifically, Mabc triggered the generation of reactive oxygen species (ROS) and the production of CCL2 and CXCL2 in murine bone marrow-derived macrophages (BMDMs). Mabc-induced CCL2, but not CXCL2, was dependent on the generation of ROS. Toll-like receptor (TLR) 2, MyD88, but not TRIF, was required for Mabc-induced CCL2 and CXCL2 expression. Additionally, Mabc infection significantly induced nuclear factor (NF)-κB nuclear translocation and luciferase activity. The activation of NF-κB was required for Mabc-induced CCL2, but not CXCL2 expression. Moreover, Mabc-induced ROS generation was required for NF-κB activation. Treatment of BMDMs with Mabc rapidly induced the activation of mitogen-activated protein kinase (MAPKs) pathways. Interestingly, CCL2 expression was dependent on the activation of JNK and ERK1/2 pathways, whereas it was negatively regulated by the p38 MAPK pathway. In contrast, Mabc-dependent CXCL2 expression was not regulated by MAPK pathways. These data suggest that intracellular ROS generation is required for innate and inflammatory responses during Mabc infection of macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.