Background Since the World’s population is increasing, it’s critical to boost agricultural productivity to meet the rising demand for food and reduce poverty. Fertilizers are widely used in traditional agricultural methods to improve crop yield, but they have a number of negative environmental consequences such as nutrient losses, decrease fertility and polluted water and air. Researchers have been focusing on alternative crop fertilizers mechanisms to address these issues in recent years and nanobiofertilizers have frequently been suggested. “Nanophos” is a biofertilizer and contains phosphate-solubilising bacteria that solubilises insoluble phosphate and makes it available to the plants for improved growth and productivity as well as maintain soil health. This study evaluated the impact of nanophos on the growth and development of maize plants and its rhizospheric microbial community such as NPK solubilising microbes, soil enzyme activities and soil protein under field condition after 20, 40 and 60 days in randomized block design. Results Maize seeds treated with nanophos showed improvement in germination of seeds, plant height, number of leaves, photosynthetic pigments, total sugar and protein level over control. A higher activity of phenol, flavonoid, antioxidant activities and yield were noticed in nanophos treated plants over control. Positive shift in total bacterial count, nitrogen fixing bacteria, phosphate and potassium solubilizers were observed in the presence of nanophos as compared to control. Soil enzyme activities were significantly (P < 0.05) improved in treated soil and showed moderately correlation between treatments estimated using Spearman rank correlation test. Real time PCR and total soil protein content analysis showed enhanced microbial population in nanophos treated soil. Obtained results showed that nanophos improved the soil microbial population and thus improved the plant growth and productivity. Conclusion The study concluded a stimulating effect of nanophos on Zea mays health and productivity and indicates good response towards total bacterial, NPK solubilising bacteria, soil enzymes, soil protein which equally showed positive response towards soil nutrient status. It can be a potential way to boost soil nutrient use efficiency and can be a better alternative to fertilizers used in the agriculture.
No abstract
Bamboo biomass is a potential source for the production of monomeric sugars containing high cellulose content with low amount of lignin. However, for efficient hydrolysis, the biomass treatment by effective pretreatment technique is required to minimize lignin content and other barrier components. During present study, the bamboo biomass was treated with different physical, chemical, biological and combined treatments to reduce the lignin content. Among all the pretreatments, the maximum lignin removal (14.5%) was obtained with the combined chemical and biological treatment under 2% NaOH+1% H2O2 +WDP2 fungal culture (5 plugs) conditions. In addition, lignolytic fungus and NaOH pretreatment was mainly effective in removing lignin, whereas the H2O2 pretreatment efficiently minimize cellulose crystallinity. To analyze structural changes of raw and treated biomass, we used scanning electron microscopy and fourier transform infrared spectroscopy. The structural analysis indicated that all treatments causes disruption in the biomass structure and loses the compactness of the biomass which facilitates the biomass conversion during hydrolysis process. The findings of the present study indicate effective pretreatment methods in breaching the recalcitrancy of the potential lignocellulosic biomass for maximum hydrolysis.
The aim of this study was to boost the production rate of a novel thermo-alkalotolerant cellulase (FPase) enzyme from the fungal isolate Aspergillus terreus PPCF. Initially, the extracellular FPase activity was 0.166 ± 0.03 UmL-1 in the culture filtrate, which further increased up to 0.91 ± 0.13 UmL-1 under optimized conditions (3% w/v wheat bran and 0.5% w/v ammonium sulfate). Through response surface methodology, the FPase activity was enhanced to 10.78 UmL1 under the cumulative effect of different factors. The zymogram analysis revealed only one activity band, with the molecular weight of ~110 KDa. The optimum pH was 7.0, but the enzyme was stable in a pH range of 4-10. The optimum temperature was 50 °C, but the stability range of the enzyme was 30-90 °C. The maximum effect of Mg2+ was observed on the FPase enzyme. The findings of the present study demonstrate the thermo- and alkalotolerance of the obtained cellulase enzyme, which will be beneficial to the biofuel and other industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.