Parkinson’s disease (PD) is a neurodegenerative disorder defined by progressive deterioration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Dental pulp stem cells (DPSCs) have been proposed to replace the degenerated dopaminergic neurons due to its inherent neurogenic and regenerative potential. However, the effective delivery and homing of DPSCs within the lesioned brain has been one of the many obstacles faced in cell-based therapy of neurodegenerative disorders. We hypothesized that DPSCs, delivered intranasally, could circumvent these challenges. In the present study, we investigated the therapeutic efficacy of intranasally administered DPSCs in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Human deciduous DPSCs were cultured, pre-labelled with PKH 26, and intranasally delivered into PD mice following MPTP treatment. Behavioural analyses were performed to measure olfactory function and sensorimotor coordination, while tyrosine hydroxylase (TH) immunofluorescence was used to evaluate MPTP neurotoxicity in SNpc neurons. Upon intranasal delivery, degenerated TH-positive neurons were ameliorated, while deterioration in behavioural performances was significantly enhanced. Thus, the intranasal approach enriched cell delivery to the brain, optimizing its therapeutic potential through its efficacious delivery and protection against dopaminergic neuron degeneration.
The characterization of therapeutic phage genomes plays a crucial role in the success rate of phage therapies. There are three checkpoints that need to be examined for the selection of phage candidates, namely, the presence of temperate markers, antimicrobial resistance (AMR) genes, and virulence genes. However, currently, no single-step tools are available for this purpose. Hence, we have developed a tool capable of checking all three conditions required for the selection of suitable therapeutic phage candidates. This tool consists of an ensemble of machine-learning-based predictors for determining the presence of temperate markers (integrase, Cro/CI repressor, immunity repressor, DNA partitioning protein A, and antirepressor) along with the integration of the ABRicate tool to determine the presence of antibiotic resistance genes and virulence genes. Using the biological features of the temperate markers, we were able to predict the presence of the temperate markers with high MCC scores (>0.70), corresponding to the lifestyle of the phages with an accuracy of 96.5%. Additionally, the screening of 183 lytic phage genomes revealed that six phages were found to contain AMR or virulence genes, showing that not all lytic phages are suitable to be used for therapy. The suite of predictors, PhageLeads, along with the integrated ABRicate tool, can be accessed online for in silico selection of suitable therapeutic phage candidates from single genome or metagenomic contigs.
BackgroundNext-generation transcriptome sequencing (RNA-Seq) has become the standard practice for studying gene splicing, mutations and changes in gene expression to obtain valuable, accurate biological conclusions. However, obtaining good sequencing coverage and depth to study these is impeded by the difficulties of obtaining high quality total RNA with minimal genomic DNA contamination. With this in mind, we evaluated the performance of Phenol-free total RNA purification kit (Amresco) in comparison with TRI Reagent (MRC) and RNeasy Mini (Qiagen) for the extraction of total RNA of Pseudomonas aeruginosa which was grown in glucose-supplemented (control) and polyethylene-supplemented (growth-limiting condition) minimal medium. All three extraction methods were coupled with an in-house DNase I treatment before the yield, integrity and size distribution of the purified RNA were assessed. RNA samples extracted with the best extraction kit were then sequenced using the Illumina HiSeq 2000 platform.ResultsTRI Reagent gave the lowest yield enriched with small RNAs (sRNAs), while RNeasy gave moderate yield of good quality RNA with trace amounts of sRNAs. The Phenol-free kit, on the other hand, gave the highest yield and the best quality RNA (RIN value of 9.85 ± 0.3) with good amounts of sRNAs. Subsequent bioinformatic analysis of the sequencing data revealed that 5435 coding genes, 452 sRNAs and 7 potential novel intergenic sRNAs were detected, indicating excellent sequencing coverage across RNA size ranges. In addition, detection of low abundance transcripts and consistency of their expression profiles across replicates from the same conditions demonstrated the reproducibility of the RNA extraction technique.ConclusionsAmresco’s Phenol-free Total RNA purification kit coupled with DNase I treatment yielded the highest quality RNAs containing good ratios of high and low molecular weight transcripts with minimal genomic DNA. These RNA extracts gave excellent non-biased sequencing coverage useful for comprehensive total transcriptome sequencing and analysis. Furthermore, our findings would be useful for those interested in studying both coding and non-coding RNAs from precious bacterial samples cultivated in growth-limiting condition, in a single sequencing run.Electronic supplementary materialThe online version of this article (doi:10.1186/s13104-015-1726-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.