Generative adversarial networks (GANs) with clustered latent spaces can perform conditional generation in a completely unsupervised manner. However, the salient attributes of unlabeled data in the real-world are mostly imbalanced. Existing unsupervised conditional GANs cannot properly cluster the attributes in their latent spaces because they assume uniform distributions of the attributes. To address this problem, we theoretically derive Stein latent optimization that provides reparameterizable gradient estimations of the latent distribution parameters assuming a Gaussian mixture prior in a continuous latent space. Structurally, we introduce an encoder network and a novel contrastive loss to help generated data from a single mixture component to represent a single attribute. We confirm that the proposed method, named Stein Latent Optimization for GANs (SLOGAN), successfully learns the balanced or imbalanced attributes and performs unsupervised tasks such as unsupervised conditional generation, unconditional generation, and cluster assignment even in the absence of information of the attributes (e.g. the imbalance ratio). Moreover, we demonstrate that the attributes to be learned can be manipulated using a small amount of probe data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.