The Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in February 2020 to monitor air quality (AQ) at an unprecedented spatial and temporal resolution from a geostationary Earth orbit (GEO) for the first time. With the development of UV–visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO, and aerosols) can be obtained. To date, all the UV–visible satellite missions monitoring air quality have been in low Earth orbit (LEO), allowing one to two observations per day. With UV–visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be on board the Geostationary Korea Multi-Purpose Satellite 2 (GEO-KOMPSAT-2) satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager 2 (GOCI-2). These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO) and ESA’s Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS).
By using multiple satellite measurements, the changes of the aerosol optical depth (AOD) and nitrogen dioxide (NO2) over South Korea were investigated from January to March 2020 to evaluate the COVID-19 effect on the regional air quality. The NO2 decrease in South Korea was found but not significant, which indicates the effects of spontaneous social distancing under the maintenance of ordinary life. The AODs in 2020 were normally high in January, but they became lower starting from February. Since the atmosphere over Eastern Asia was unusually stagnant in January and February 2020, the AOD decrease in February 2020 clearly reveals the positive effect of the COVID-19. Considering the insignificant NO2 decrease in South Korea and the relatively long lifetime of aerosols, the AOD decrease in South Korea may be more attributed to the improvement of the air quality in neighboring countries. In March, regional atmosphere became well mixed and ventilated over South Korea, contributing to large enhancement of air quality. While the social activity was reduced after the COVID-19 outbreak, the regional meteorology should be also examined significantly to avoid the biased evaluation of the social impact on the change of the regional air quality.
Formaldehyde (HCHO) is important in atmospheric chemistry and outdoor air quality through its role in atmospheric oxidation and the production of ozone and secondary organic aerosols. The oxidation of non-methane volatile organic compounds (NMVOCs) from biomass burning, anthropogenic sources, and biogenic emissions results in local and regional HCHO enhancements, while methane oxidation is largely responsible for HCHO in the global background atmosphere. A smaller amount of direct HCHO emission also occurs through industrial activity and biomass burning. Spaceborne remote sensing instruments can be used to map the global distribution of HCHO using characteristic absorption features in the ultraviolet region of the electromagnetic spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.