Energy management strategy is an important factor in determining the fuel economy of hybrid electric vehicles; thus, much research on how to distribute the required power to engines and motors of hybrid vehicles is required. Recently, various studies have been conducted based on reinforcement learning to optimally control the hybrid electric vehicle. In fact, the fundamental control approach of reinforcement learning shares many control frameworks with the control approach by using deterministic dynamic programming or stochastic dynamic programming. In this study, we compare the reinforcement learning based strategy by using these dynamic programming-based control approaches. For optimal control of hybrid electric vehicle, each control method was compared in terms of fuel efficiency by performing simulation by using various driving cycles. Based on our simulations, we showed the reinforcement learning-based strategy can obtain global optimality in the optimal control problem with an infinite horizon, which can also be obtained by stochastic dynamic programming. We also showed that the reinforcement learning-based strategy can present a solution close to the optimal one using deterministic dynamic programming, while a reinforcement learning-based strategy is more appropriate for a time variant controller with boundary value constraints. In addition, we verified the convergence characteristics of the control strategy based on reinforcement learning, when transfer learning was performed through value initialization using stochastic dynamic programming. INDEX TERMS Dynamic programming, hybrid electric vehicle, optimal control, reinforcement learning, power management.
The energy management strategy of a hybrid electric vehicle directly determines the fuel economy of the vehicle. As a supervisory control strategy to divide the required power into its multiple power sources, engines and batteries, many studies have been conducting using rule-based and optimization-based approaches for energy management strategy so far. Recently, studies using various machine learning techniques have been conducted. In this paper, a novel control framework implementing Model-based Q-learning is developed for the optimal control problem of hybrid electric vehicles. As an online energy management strategy, a new approach could learn the characteristics of a current given driving environment and adaptively change the control policy through learning. Especially, for the proposed algorithm, the internal powertrain environment and external driving environment are separated so they can be learned via the reinforcement learning framework, which results in a simpler and more intuitive control strategy that can be explained using the vehicle state approximation model. The proposed algorithm is tested and verified through simulations, and the simulation results present near optimal solution. The simulation results are compared with conventional rule-based strategies and optimal control solutions acquired from Dynamic Programming.INDEX TERMS Hybrid electric vehicle, optimal control, power management, Q-learning, reinforcement learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.