ObjectivePatients with endogenous Cushing's Syndrome (CS), as long-time treated patients with exogenous glucocorticoids (GCs), have severe systemic manifestations including secondary osteoporosis and low-energy fractures. The aim of the present study was to investigate the functional role ofTXNIPin bone with focus on osteoblast (OB) differentiation and OB-mediated osteoclast activity and functionin vitro.Design and methodsNine bone biopsies from CS before and after surgical treatment were screened for expressional candidate genes. Microarray analyses revealed that the gene encodingTXNIPranked among the most upregulated genes. Subsequentin vitroandin vivostudies were performed.ResultsWe found thatTXNIPgene in bone is downregulated in CS following surgical treatment. Furthermore, ourin vivodata indicate novel associations between thioredoxin andTXNIP. Ourin vitrostudies showed that silencingTXNIPin OBs was followed by increased differentiation and expression and secretion of osteocalcin as well as enhanced activity of alkaline phosphatase. Moreover, treating osteoclasts with silenced TXNIP OB media showed an increased osteoclast activity.ConclusionsTXNIPexpression in bone is highly regulated during the treatment of active CS, and by GC in bone cellsin vitro. Our data indicate that TXNIP may mediate some of the detrimental effects of GC on OB function as well as modulate OB-mediated osteoclastogenesis by regulating the OPG/RANKL ratio.
Recent studies have described bone as an endocrine organ regulating glucose metabolism, with insulin signaling regulating osteocalcin secretion and osteocalcin regulating β cell function. We have previously demonstrated increased bone expression of TXNIP in patients with endogenous Cushing's syndrome (CS), and we hypothesized that TXNIP could contribute to the dysregulated glucose metabolism in CS. We studied 33 CS patients and 29 matched controls, with bone biopsies from nine patients, before and after surgical treatment. In vitro, the effect of silencing TXNIP (siTXNIP) in osteoblasts, including its effect on human islet cells, was examined. Our major findings were: (i) The high mRNA levels of TXNIP in bone from CS patients were significantly associated with high levels of glucose and insulin, increased insulin resistance, and decreased insulin sensitivity in these patients. (ii) Silencing TXNIP in osteoblasts enhanced their OC response to insulin and glucose and down-regulated interleukin (IL)-8 levels in these cells. (iii) Conditional media from siTXNIP-treated osteoblasts promoted insulin content and anti-inflammatory responses in human islet cells. We recently demonstrated that the thioredoxin/TXNIP axis may mediate some detrimental effects of glucocorticoid excess on bone tissue in CS. Here we show that alterations in this axis also may affect glucose metabolism in these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.