Benefiting from these unique properties, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has rapidly increased from initial ≈3% to now 25.5%, [7][8][9] situating it at the forefront of the third-generation solar cells. [10,11] Unfortunately, these ionic hybrid perovskite materials are extremely sensitive to light, [12,13] heat, [14] and moisture, [15] resulting in unstable crystal structures. During the past decade, numerous passivating methods have been developed to enhance both efficiency and long-term stability of hybrid PSCs. [16][17][18] In these polycrystalline perovskite films, defects formed at either surface or grain boundaries have been widely reported to significantly restrict carriers transport and crystal stability, which further deteriorates the device performance. [19,20] Indeed, a large number of defects are generated during the film crystallization process due to the low formation energy and soft lattice character of the perovskite crystals. [21,22] Besides, the ionic nature of hybrid halide perovskite leads to unfavorable carrier recombination and ion migration in the perovskite films, resulting in unsatisfactory efficiency or stability of the devices. [23,24] In particular, the crystallization process is accompanied by the ubiquitous formation of imperfections at grain boundaries and surfaces, metallic lead clusters, and intrinsic point defects. [24][25][26] Among them, intrinsic site Organic-inorganic hybrid lead halide perovskite solar cells have made unprecedented progress in improving photovoltaic efficiency during the past decade, while still facing critical stability challenges. Herein, the natural organic dye Indigo is explored for the first time to be an efficient molecular passivator that assists in the preparation of high-quality hybrid perovskite film with reduced defects and enhanced stability. The Indigo molecule with both carbonyl and amino groups can provide bifunctional chemical passivation for defects. In-depth theoretical and experimental studies show that the Indigo molecules firmly binds to the perovskite surfaces, enhancing the crystallization of perovskite films with improved morphology. Consequently, the Indigo-passivated perovskite film exhibits increased grain size with better uniformity, reduced grain boundaries, lowered defect density, and retarded ion migration, boosting the device efficiency up to 23.22%, and ≈21% for large-area device (1 cm 2 ). Furthermore, the Indigo passivation can enhance device stability in terms of both humidity and thermal stress. These results provide not only new insights into the multipassivation role of natural organic dyes but also a simple and low-cost strategy to prepare high-quality hybrid perovskite films for optoelectronic applications based on Indigo derivatives.
Subsequently, the P/N homojunction perovskite QD solar cell is assembled using different carrier-type QDs, delivering an enhanced power conversion efficiency of 15.29%. Most importantly, this P/N homojunction strategy realizes remarkable thickness tolerance of QD solar cells, showing a record high efficiency of 12.28% for a 1.2 µm-thick QD active-layer and demonstrating great potential for the future printing manufacturing of QDs solar cells.
Here, a pseudo-solution-phase ligands exchange (p-SPLE) strategy is developed for fabricating CsPbI3 quantum dot (QD) solar cell. Using short organic aromatic ligands to partly replace the long-chain ligands at QD...
For emerging perovskite quantum dots (QDs), understanding the surface features and their impact on the materials and devices is becoming increasingly urgent. In this family, hybrid FAPbI 3 QDs (FA: formamidium) exhibit higher ambient stability, nearinfrared absorption and sufficient carrier lifetime. However, hybrid QDs suffer from difficulty in modulating surface ligand, which is essential for constructing conductive QD arrays for photovoltaics. Herein, assisted by an ionic liquid formamidine thiocyanate, we report a facile surface reconfiguration methodology to modulate surface and manipulate electronic coupling of FAPbI 3 QDs, which is exploited to enhance charge transport for fabricating high-quality QD arrays and photovoltaic devices. Finally, a record-high efficiency approaching 15 % is achieved for FAPbI 3 QD solar cells, and they retain over 80 % of the initial efficiency after aging in ambient environment (20-30 % humidity, 25 °C) for over 600 h.
Solution processable semiconductors like organics and emerging lead halide perovskites (LHPs) are ideal candidates for photovoltaics combining high performance and flexibility with reduced manufacturing cost. Moreover, the study of hybrid semiconductors would lead to advanced structures and deep understanding that will propel this field even further. Herein, a novel device architecture involving block copolymer/perovskite hybrid bulk heterointerfaces is investigated, such a modification could enhance light absorption, create an energy level cascade, and provides a thin hydrophobic layer, thus enabling enhanced carrier generation, promoting energy transfer and preventing moisture invasion, respectively. The resulting hybrid block copolymer/perovskite solar cell exhibits a champion efficiency of 24.07% for 0.0725 cm2‐sized devices and 21.44% for 1 cm2‐sized devices, respectively, together with enhanced stability, which is among the highest reports of organic/perovskite hybrid devices. More importantly, this approach has been effectively extended to other LHPs with different chemical compositions like MAPbI3 and CsPbI3, which may shed light on the design of highly efficient block copolymer/perovskite hybrid materials and architectures that would overcome current limitations for realistic application exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.