Volatile threshold switching devices have attracted great attention for use as selectors in passive crossbar arrays. These devices show an abrupt hysteretic jump in the current–voltage characteristic and thus offer very high selectivity. As this nonlinearity appears for either voltage polarity, threshold switches are an ideal selector for bipolar‐switching redox‐based resistive memories. To date, the predominant explanation of the threshold‐switching phenomenon in NbO2 and related materials is the insulator‐to‐metal transition that occurs at a certain temperature and is connected to a phase transition. However, some essential experimental findings are not satisfactorily explained. Here, a multidimensional simulation of the threshold switching in NbO2 is presented that overcomes these shortcomings. The model is based on an electric field‐induced thermal runaway that increases the amount of mobile charge carriers in the device. Applying this model in a simulation correctly predicts the experimentally observed threshold‐type current–voltage characteristic, inclusive of important features like the narrow opening of the hysteresis and the magnitude of the current jump. Furthermore, the simulation enables to discuss different influencing parameters independently at spatial resolution. The model is also applicable to a wider class of materials showing the threshold switching, but does not show a temperature‐induced insulator‐to‐metal transition.
Potassium‐ion batteries (PIBs) are promising alternatives to lithium‐ion batteries because of the advantage of abundant, low‐cost potassium resources. However, PIBs are facing a pivotal challenge to develop suitable electrode materials for efficient insertion/extraction of large‐radius potassium ions (K+). Here, a viable anode material composed of uniform, hollow porous bowl‐like hard carbon dual doped with nitrogen (N) and phosphorus (P) (denoted as N/P‐HPCB) is developed for high‐performance PIBs. With prominent merits in structure, the as‐fabricated N/P‐HPCB electrode manifests extraordinary potassium storage performance in terms of high reversible capacity (458.3 mAh g−1 after 100 cycles at 0.1 A g−1), superior rate performance (213.6 mAh g−1 at 4 A g−1), and long‐term cyclability (205.2 mAh g−1 after 1000 cycles at 2 A g−1). Density‐functional theory calculations reveal the merits of N/P dual doping in favor of facilitating the adsorption/diffusion of K+ and enhancing the electronic conductivity, guaranteeing improved capacity, and rate capability. Moreover, in situ transmission electron microscopy in conjunction with ex situ microscopy and Raman spectroscopy confirms the exceptional cycling stability originating from the excellent phase reversibility and robust structure integrity of N/P‐HPCB electrode during cycling. Overall, the findings shed light on the development of high‐performance, durable carbon anodes for advanced PIBs.
Redox-type resistive random access memories based on transition-metal oxides are studied as adjustable two-terminal devices for integrated network applications beyond von Neumann computing. The prevailing, so-called, counter-eight-wise (c8w) polarity of the switching hysteresis in filamentary-type valence change mechanism devices originates from a temperature- and field-controlled drift-diffusion process of mobile ions, predominantly oxygen vacancies in the switching oxide. Recently, a bipolar resistive switching (BRS) process with opposite polarity, so-called, eight-wise (8w) switching, has been reported that, especially for TiO cells, is still not completely understood. Here, we report on nanosized (<0.01 μm) asymmetric memristive cells from 3 to 6 nm thick TiO films by atomic layer deposition, which reveal a coexistence of c8w and 8w switching in the same cell. As important characteristics for the studied Pt/TiO/Ti/Pt devices, the resistance states of both modes are nonvolatile and share one common state; i.e., the high-resistance state of the c8w mode equals the low-resistance state of the 8w-mode. A transition between the opposite hysteresis loops is possible by voltage control. Specifically, 8w BRS in the TiO cells is a self-limited low-energy nonvolatile switching process. Additionally, the 8w reset process enables the programming of multilevel high-resistance states. Combining the experimental results with data from simulation studies allows to propose a model, which explains 8w BRS by an oxygen transfer process across the Pt/TiO Schottky interface at the position of the c8w filament. Therefore, the coexistence of c8w and 8w BRS in the nanoscale asymmetric Pt/TiO/Ti/Pt cells is understood from a competition between drift/diffusion of oxygen vacancies in the oxide layer and an oxygen exchange reaction across the Pt/TiO interface.
Engineering heterogeneous composite electrodes consisting of multiple active components for meeting various electrochemical and structural demands have proven indispensable for significantly boosting the performance of lithium‐ion batteries (LIBs). Here, a novel design of ZnS/Sn heterostructures with rich phase boundaries concurrently encapsulated into hierarchical interconnected porous nitrogen‐doped carbon frameworks (ZnS/Sn@NPC) working as superior anode for LIBs, is showcased. These ZnS/Sn@NPC heterostructures with abundant heterointerfaces, a unique interconnected porous architecture, as well as a highly conductive N‐doped C matrix can provide plentiful Li+‐storage active sites, facilitate charge transfer, and reinforce the structural stability. Accordingly, the as‐fabricated ZnS/Sn@NPC anode for LIBs has achieved a high reversible capacity (769 mAh g−1, 150 cycles at 0.1 A g−1), high‐rate capability and long cycling stability (600 cycles, 645.3 mAh g−1 at 1 A g−1, 92.3% capacity retention). By integrating in situ/ex situ microscopic and spectroscopic characterizations with theoretical simulations, a multiscale and in‐depth fundamental understanding of underlying reaction mechanisms and origins of enhanced performance of ZnS/Sn@NPC is explicitly elucidated. Furthermore, a full cell assembled with prelithiated ZnS/Sn@NPC anode and LiFePO4 cathode displays superior rate and cycling performance. This work highlights the significance of chemical heterointerface engineering in rationally designing high‐performance electrodes for LIBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.