In this study, acoustic emission (AE) monitoring with a Fuzzy C-Means (FCM) clustering is developed to detect the delamination process during quasi-static 3-point bending test on glass/epoxy composite materials. The main fracture mode that should be emphasized and has an effect on the residual strength of composite materials is delamination. The 3-point bending test simulates thrust force due to drilling process without backup plate. In this work, two types of specimen at different layups, woven [0,90] s and unidirectional [0] s, leading to different levels of damage evolution, were studied. Using acoustic emission monitoring can help to detect these fracture mechanisms. The obtained AE signals were classified using FCM. Dependency percentage of damages in each class is different in two specimens. Three parameters (Peak Amplitude, Count, and Average Frequency) were used to validate the FCM based classification. The results show that there is a good agreement with the FCM classification and microscopic observation by SEM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.