Activated carbon fibers (ACF) are known as excellent adsorbent materials due to their fast adsorption rate and easy handling characteristic. The ACF can be manufactured from the polyacrylonitrile fiber, based on an usual carbon fibers (CF) production process accomplished by an additional activation process. The aim of the present work is to describe the production, chemical/morphological characterization and application potentiality of activated carbon fiber felt (ACFF) produced from textile PAN fiber, using a set of homemade equipment. The 5.0 dtex PAN fiber tow with 200 thousand filaments was oxidized and used as raw material for felt production. The oxidized PAN fiber felt (OPFF) was displaced in a special sample holder, carbonized (900 °C) and then activated in CO 2 atmosphere at 1000 °C in an electric tubular furnace. All steps of the process were performed as fast as possible, and characterization was done by 77 K N 2 isotherms, adsorption isotherms in liquid phase, scanning electronic microscope, X-ray diffraction and surface chemistry by Bhoem methodology. The results confirmed the production of essentially microporous (pore < 3.2 nm, centered on 1.2 nm) and 1,300 m 2 g -1 surface area. The ACFF produced have demonstrated a strong potential application as electrode supercapacitor.
In this work the effect of grain refinement on the shape memory properties of a Fe-Mn-Si-Cr-Ni-Co-Ti alloy was evaluated using compression tests. In order to refine the microstructure, the samples were heavily deformed by equal channel angular extrusion (ECAE) and then annealed at different temperatures ranging from 450°C to 1050°C. These treatments resulted in the formation of intermetallic precipitates and strengthening of austenitic matrix. The results of compression testes show that the higher degrees of shape recovery (56 % for 4% strain) were achieved by the samples with smaller grain size (12 µm).
A [211]-oriented niobium single crystal was deformed by equal channel angular pressing (ECAP) at room temperature using the route B c to a total strain of 9.2. A sharp cube texture develops after ECAP processing. The deformed samples were annealed in vacuum from 400ºC (673 K) to 900ºC (1173 K) for 1 h to evaluate their microstructural stability. Scanning electron microscopy (SEM) was used to image the microstructures of as-deformed and annealed specimens. Electron backscatter diffraction (EBSD) was employed to determine the respective microtextures before and after annealing. Coarsening of the microstructure occurs at a maximum rate at 550ºC (823 K) due to discontinuous recrystallization. Normal grain growth replaces discontinuous recrystallization as the main coarsening mechanism above 700ºC (973 K).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.