We have isolated and purified a cell surface sialoglycopeptide (SGP) from bovine cerebral cortex cells that previously was shown to be a potent inhibitor of cellular protein synthesis. The following studies were carried out to characterize the potential ability of the SGP to inhibit DNA synthesis and to arrest cell division. Treatment of exponentially proliferating Swiss 3T3 cells with the SGP inhibitor resulted in a marked inhibition of thymidine incorporation within 24 h. When the SGP was removed from inhibited cultures, a sharp rise in 3H-thymidine incorporation followed within 3-4 h that peaked well above that measured in exponentially growing cultures, suggesting that the inhibitory action of the SGP was reversible and that a significant proportion of the arrested cells was synchronized in the mitotic cycle. In addition to DNA synthesis, the inhibitory action of the SGP was monitored by direct measurement of cell number. Consistent with the thymidine incorporation data, the SGP completely inhibited 3T3 cell division 20 h after its addition to exponentially growing cultures. Upon reversal there was a delay of 15 h before cell division resumed, when the arrested cells quickly doubled. Most, if not all, of the growth-arrested cells appeared to have been synchronized by the SGP. The SGP inhibited DNA synthesis in a surprisingly wide variety of target cells, and the relative degree of their sensitivity to the inhibitor was remarkably similar. Cells sensitive to the SGP ranged from vertebrate to invertebrate cells, fibroblast and epitheliallike cells, primary cells and established cell cultures, as well as a wide range of transformed cell lines.
A sialoglycopeptide (SGP), isolated and purified from bovine cerebral cortex cells, was studied in regard to early signal transduction events associated with the cell cycle. Previously shown to be a potent antagonist to a variety of mitogens, the SGP abrogated the ability of 12-O-tetradecanoylphorbol-13 acetate (TPA) to elicit an alkalinization of 3T3 cell cytosol, but only when added minutes prior to, or simultaneously with, the tumor promoter. 3T3 cell TPA-mediated Ca2+ mobilization was also inhibited by the SGP although the inhibitor itself did not bind Ca2+ in a cell-free assay. The results are discussed in light of the already known kinetics of interaction between the SGP, various mitogens, and the calcium ionophore A23187 with regard to the pivotal events leading to the decision of a cell to divide or not to divide.
A novel cell regulatory sialoglycopeptide (CeReS-18), purified from the cell surface of bovine cerebral cortex cells has been shown to be a potent and reversible inhibitor of proliferation of a wide array of fibroblasts as well as epithelial-like cells and nontransformed and transformed cells. To investigate the possible mechanisms by which CeReS-18 exerts its inhibitory action, the effect of the inhibitor on the posttranslational regulation of the retinoblastoma susceptibility gene product (RB), a tumor suppressor gene, has been examined. It is shown that CeReS-18 mediated cell cycle arrest of both human diploid fibroblasts (HSBP) and mouse fibroblasts (Swiss 3T3) results in the maintenance of the RB protein in the hypophosphorylated state, consistent with a late G1 arrest site. Although their normal nontransformed counterparts are sensitive to cell cycle arrest mediated by CeReS-18, cell lines lacking a functional RB protein, through either genetic mutation or DNA tumor virus oncoprotein interaction, are less sensitive. The refractory nature of these cells is shown to be independent of specific surface receptors for the inhibitor, and another tumor suppressor gene (p53) does not appear to be involved in the CeReS-18 inhibition of cell proliferation. The requirement for a functional RB protein product, in order for CeReS-18 to mediate cell cycle arrest, is discussed in light of regulatory events associated with density-dependent growth inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.