The monophyletic group Caniformia (dog-like carnivores) in the order Carnivora comprises 9 families. Except for the general consensus for the earliest divergence of Canidae and the grouping of Procyonidae and Mustelidae, conflicting phylogenetic hypotheses exist for the other caniformian families. In the present study, a data set comprising > 22 kb of 22 nuclear intron loci from 16 caniformian species is used to investigate the phylogenetic utility of nuclear introns in resolving the interfamilial relationships of Caniformia. Our phylogenetic analyses support Ailuridae as the sister taxon to a clade containing Procyonidae and Mustelidae, with Mephitinae being the sister taxon to all of them. The unresolved placements of Ursidae and Pinnipeds here emphasize a need to add more data and include more taxa to resolve this problem. The present study not only resolves some of the ambiguous relationships in Caniformia phylogeny but also shows that the noncoding nuclear markers can offer powerful complementary data for estimating the species tree. None of the newly developed introns here have previously been used for phylogeny reconstruction, thus increasing the spectrum of molecular markers available to mammalian systematics. Interestingly, all the newly developed intron data partitions exhibit intraindividual allele heterozygotes (IIAHs). There are 115 cases of IIAHs in total. The incorporation of IIAHs into phylogenetic analysis not only provides insights into the interfamilial relationships of Caniformia but also identifies two potential hybridization events occurred within Ursidae and Otariidae, respectively. Finally, the powers and pitfalls of phylogenetics using nuclear introns as markers are discussed in the context of Caniformia phylogeny.
Skeletal muscle is the metabolic powerhouse of the body, however, dysregulation of the mechanisms involved in skeletal muscle mass maintenance can have devastating effects leading to many metabolic and physiological diseases. The lack of effective solutions makes finding a validated nutritional intervention an urgent unmet medical need. In vitro testing in murine skeletal muscle cells and human macrophages was carried out to determine the effect of a hydrolysate derived from vicia faba (PeptiStrong: NPN_1) against phosphorylated S6, atrophy gene expression, and tumour necrosis factor alpha (TNF-α) secretion, respectively. Finally, the efficacy of NPN_1 on attenuating muscle waste in vivo was assessed in an atrophy murine model. Treatment of NPN_1 significantly increased the phosphorylation of S6, downregulated muscle atrophy related genes, and reduced lipopolysaccharide-induced TNF-α release in vitro. In a disuse atrophy murine model, following 18 days of NPN_1 treatment, mice exhibited a significant attenuation of muscle loss in the soleus muscle and increased the integrated expression of Type I and Type IIa fibres. At the RNA level, a significant upregulation of protein synthesis-related genes was observed in the soleus muscle following NPN_1 treatment. In vitro and preclinical results suggest that NPN_1 is an effective bioactive ingredient with great potential to prolong muscle health.
Background:
Lifestyle interventions have been shown to delay or prevent the onset of type 2 diabetes among high risk adults. A better understanding of the variability in physiological responses would support the matching of individuals with the best type of intervention in future prevention programmes, in order to optimize risk reduction. The purpose of this study was to determine if phenotypic characteristics at baseline or following a 12 weeks lifestyle intervention could explain the inter-individual variability in change in glucose tolerance in individuals with high risk for type 2 diabetes.
Methods:
In total, 285 subjects with normal glucose tolerance (NGT, FINDRISC score > 12), impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) were recruited for a 12 weeks lifestyle intervention. Glucose tolerance, insulin sensitivity, anthropometric characteristics and aerobic fitness were measured. Variability of responses was examined by grouping participants by baseline glycemic status, by cluster analysis based on the change in glucose tolerance and by Principal Component Analysis (PCA).
Results:
In agreement with other studies, the mean response to the 12 weeks intervention was positive for the majority of parameters. Overall, 89% improved BMI, 80% waist circumference, and 81% body fat while only 64% improved fasting plasma glucose and 60% 2 h glucose. The impact of the intervention by glycaemic group did not show any phenotypic differences in response between NGT, IFG, and IGT. A hierarchical cluster analysis of change in glucose tolerance identified four sub-groups of “responders” (high and moderate) and “non-responders” (no response or deteriorated) but there were few differences in baseline clincal and physiological parameters or in response to the intervention to explain the overall variance. A further PCA analysis of 19 clinical and physiological univariables could explain less than half (48%) of total variability.
Conclusion:
We found that phenotypic characteristics from standard clinical and physiological parameters were not sufficient to account for the inter-individual variability in glucose tolerance following a 12 weeks lifestyle intervention in inidivuals at high risk for type 2 diabetes. Further work is required to identify biomarkers that complement phenotypic traits and better predict the response to glucose tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.