Lifestyle choices influence 20–40 % of adult peak bone mass. Therefore, optimization of lifestyle factors known to influence peak bone mass and strength is an important strategy aimed at reducing risk of osteoporosis or low bone mass later in life. The National Osteoporosis Foundation has issued this scientific statement to provide evidence-based guidance and a national implementation strategy for the purpose of helping individuals achieve maximal peak bone mass early in life. In this scientific statement, we (1) report the results of an evidence-based review of the literature since 2000 on factors that influence achieving the full genetic potential for skeletal mass; (2) recommend lifestyle choices that promote maximal bone health throughout the lifespan; (3) outline a research agenda to address current gaps; and (4) identify implementation strategies. We conducted a systematic review of the role of individual nutrients, food patterns, special issues, contraceptives, and physical activity on bone mass and strength development in youth. An evidence grading system was applied to describe the strength of available evidence on these individual modifiable lifestyle factors that may (or may not) influence the development of peak bone mass (Table 1). A summary of the grades for each of these factors is given below. We describe the underpinning biology of these relationships as well as other factors for which a systematic review approach was not possible. Articles published since 2000, all of which followed the report by Heaney et al. [1] published in that year, were considered for this scientific statement. This current review is a systematic update of the previous review conducted by the National Osteoporosis Foundation [1].Lifestyle FactorGrade
Macronutrients
FatD ProteinC
Micronutrients
CalciumA Vitamin DB Micronutrients other than calcium and vitamin DD
Food Patterns
DairyB FiberC Fruits and vegetablesC Detriment of cola and caffeinated beveragesC
Infant Nutrition
Duration of breastfeedingD Breastfeeding versus formula feedingD Enriched formula feedingD
Adolescent Special Issues
Detriment of oral contraceptivesD Detriment of DMPA injectionsB Detriment of alcoholD Detriment of smokingC
Physical Activity and Exercise
Effect on bone mass and densityA Effect on bone structural outcomesB
Considering the evidence-based literature review, we recommend lifestyle choices that promote maximal bone health from childhood through young to late adolescence and outline a research agenda to address current gaps in knowledge. The best evidence (grade A) is available for positive effects of calcium intake and physical activity, especially during the late childhood and peripubertal years—a critical period for bone accretion. Good evidence is also available for a role of vitamin D and dairy consumption and a detriment of DMPA injections. However, more rigorous trial data on many other lifestyle choices are needed and this need is outlined in our research agenda. Implementation strategies for lifestyle modifications to promote de...
We provide here dual-energy x-ray absorptiometry reference data on a well-characterized cohort of 2012 children and adolescents. These reference curves provide the most robust reference values for the assessment and monitoring of bone health in children and adolescents in the literature to date.
Most methods to adjust BMC/BMD Z-scores for height were biased by age and/or HAZ. Adjustments using HAZ were least biased relative to HAZ and age and can be used to evaluate the effect of short or tall stature on BMC/BMD Z-scores.
A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10(-10)) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.