European populations of many ground-nesting farmland birds have declined in recent decades. Increases in predator populations and nest predation may play an important role in this decline, along with habitat loss. However, the role of various predators has often remained unclear. We conducted a study with artificial nests and wildlife cameras (n = 104) in agricultural landscapes during 2015-2016 in South Finland. Our trials formed a 400-m wide gradient from forest to field. The aim of our study was to monitor nest survival and nest predators in a spatial and temporal scale. We tested the effect of distance to the forest and nest visibility to nest predation. During an 8-day period, 39.4% of the artificial nests were predated. Fifty percent of the predators were birds, 40% mammals, and 10% remained unknown. The three dominant predators of our artificial nests were the raccoon dog (Nyctereutes procyonoides) with 11 nests and the hooded crow (Corvus corone cornix) and the magpie (Pica pica) with 10 depredated nests each. Our analysis indicates that avian predators preyed upon nests in open fields further away from the forest edge, whereas mammalian predation concentrated closer to the forest edge. Predation occurred more likely at the beginning of the survey and nest survival increased as days passed. Our study highlights the efficiency of using wildlife camera traps in nest predation studies. We also suggest that the ongoing expansion of alien predators across Europe may have a greater impact on ground-nesting bird populations than previously anticipated.
The role of an alien predator in the community depends on its interaction with native predators. The absence of apex predators may facilitate outbreaks of invasive mesopredators, but the effect of apex predators may vary between species and environments. We analysed the occurrence of a common invasive mesopredator in Europe, the raccoon dog (Nyctereutes procyonoides), and native mesopredators, the red fox and the Eurasian badger, in camera-trap data from Finland. The observations in cameras were analysed in relation to the presence of apex predators in the landscape (grey wolf and Eurasian lynx), human density, and habitat. We observed negative effect of increasing presence of wolves and lynxes on the occurrence of raccoon dogs. This effect appeared clear compared to the effects of habitat and human density. The effect of lynxes on raccoon dogs was clearer in areas with short growth season. For the occurrence of badgers, the presence of wolves had a weak negative effect and the presence of lynxes had a positive effect. For the occurrence of red foxes, wolves had a positive effect when agricultural fields were sparse in the landscape and lynxes had no effect. We also observed that the invasive raccoon dog currently appears to be the most common mesopredator within the study area. We conclude that the effect of apex predators on mesopredators depends on the environment and, in our case, was more suppressive on the alien mesopredator than on the native mesopredators. Thus, apex predators can play an important role in controlling invasive mesopredators.
Agricultural intensification has significantly impacted habitat structures in agricultural landscapes and is one of the main drivers of biodiversity decline, especially in farmland birds. Birds are considered to reflect well the trends in other biodiversity elements and are therefore often used as indicator species. We studied common pheasant (Phasianus colchicus) brood habitat use in a small-grain-dominated farmland in southern Finland. The broods significantly preferred field margins compared to their availability. The importance of field margins was underlined, as 68% of pheasant brood observations in grain fields were within a 25-m-wide zone from the field edge, despite the availability being only 40% of the field area. Our results support the idea that field margins and their proximity act as possible biodiversity reservoirs even in intensive farming systems. Increasing the amount of field margins can be an effective management method when aiming to improve success of common pheasant broods while simultaneously benefitting farmland biodiversity. Identifying key habitats and landscape features that allow the co-existence of biodiversity and effective food production is crucial when aiming to halt the ongoing biodiversity collapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.