Of the many roles insects serve for ecosystem function, pollination is possibly the most important service directly linked to human well-being. However, land use changes have contributed to the decline of pollinators and their habitats. In agricultural landscapes that also support renewable energy developments such as utility-scale solar energy [USSE] facilities, opportunities may exist to conserve insect pollinators and locally restore their ecosystem services through the implementation of vegetation management approaches that aim to provide and maintain pollinator habitat at USSE facilities. As a first step toward understanding the potential agricultural benefits of solar-pollinator habitat, we identified areas of overlap between USSE facilities and surrounding pollinator-dependent crop types in the United States (U.S.). Using spatial data on solar energy developments and crop types across the U.S., and assuming a pollinator foraging distance of 1.5 km, we identified over 3,500 km of agricultural land near existing and planned USSE facilities that may benefit from increased pollination services through the creation of pollinator habitat at the USSE facilities. The following five pollinator-dependent crop types accounted for over 90% of the agriculture near USSE facilities, and these could benefit most from the creation of pollinator habitat at existing and planned USSE facilities: soybeans, alfalfa, cotton, almonds, and citrus. We discuss how our results may be used to understand potential agro-economic implications of solar-pollinator habitat. Our results show that ecosystem service restoration through the creation of pollinator habitat could improve the sustainability of large-scale renewable energy developments in agricultural landscapes.
Achieving decarbonization goals to address global climate change and increasing energy needs requires significant continued investments in solar energy. The expansion of utility-scale solar development across the globe has increased the pressure on land resources for energy generation and other land uses (e.g., agriculture, biodiversity conservation). To address this growing issue, greater emphasis has been placed on solar development strategies that maximize the benefits of solar energy generation and multiple ecosystem services, such as the development of agrivoltaics systems that co-locate solar energy production and various forms of conservation and agricultural land uses. The purpose of this paper is to systematically synthesize the potential ecosystem services of agrivoltaics and summarize how these development strategies could address several United Nations Sustainable Development Goals (SDGs). Our review will focus on four broad potential ecosystem services of agrivoltaics: (1) energy and economic benefits; (2) agricultural provisioning services of food production and animal husbandry; (3) biodiversity conservation; and (4) regulating ecosystem services such as carbon sequestration and water and soil conservation. In particular, we will highlight the state of the science, challenges, and knowledge gaps that represent opportunities for further study to better understand how solar energy deployment can facilitate sustainable development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.