Background and Aims: Chronic inflammation induces liver fibrosis, cirrhosis and potentially liver cancer. Kupffer cells modulate hepatic stellate cells by secreting immunologically active proteins as TGF-β. TGF-β promotes liver fibrosis via the activation of Sma- and Mad-related protein 3. IL-37 broadly suppresses innate and adaptive immune responses. Intracellular IL-37 interacts with Smad3. We hypothesize that IL-37 downregulates the activation of hepatic Kupffer and stellate cells and interferes with the TGF-β signaling cascade to modulate liver fibrogenesis.Methods: The role of IL-37 on liver inflammation and fibrogenesis was assessed in three mouse models as well as isolated Kupffer- and stellate cells. Serum IL-37 was tested by ELISA in a clinical cohort and correlated with liver disease severity.Results: Transgene expression of IL-37 in mice extends survival, reduces hepatic damage, expression of early markers of fibrosis and histologically assessed liver fibrosis after bile duct ligation. IL-37tg mice were protected against CCl4-induced liver inflammation. Colitis-associated liver inflammation and fibrosis was less severe in IL-10 knockout IL-37tg mice. Spontaneous and LPS/TGF-β-induced cytokine release and profibrogenic gene expression was lower in HSC and KC isolated from IL-37tg mice and IL-37 overexpressing, IL-1β stimulated human LX-2 stellate cells. However, administration of recombinant human IL-37 did not modulate fibrosis pathways after BDL in mice, LX2 cells or murine HSCs. In a large clinical cohort, we observed a positive correlation of serum IL-37 levels with disease severity in liver cirrhosis.Conclusions: Predominantly intracellular IL-37 downregulates liver inflammation and fibrosis. The correlation of serum IL-37 with disease severity in cirrhosis suggests its potential as a novel target modulating the course of liver fibrosis.
Mapping the network of proteins provides a powerful means to investigate the function of disease genes and to unravel the molecular basis of phenotypes. We present an automated informatics-aided and bioluminescence resonance energy transfer-based approach (iBRET) enabling high-confidence detection of protein−protein interactions in living mammalian cells. A screen of the ABCD1 protein, which is affected in X-linked adrenoleukodystrophy (X-ALD), against an organelle library of peroxisomal proteins demonstrated applicability of iBRET for large-scale experiments. We identified novel protein–protein interactions for ABCD1 (with ALDH3A2, DAO, ECI2, FAR1, PEX10, PEX13, PEX5, PXMP2, and PIPOX), mapped its position within the peroxisomal protein–protein interaction network, and determined that pathogenic missense variants in ABCD1 alter the interaction with selected binding partners. These findings provide mechanistic insights into pathophysiology of X-ALD and may foster the identification of new disease modifiers.
The systematic perturbation of genomes using CRISPR/Cas9 deciphers gene function at an unprecedented rate, depth and ease. Commercially available sgRNA libraries typically contain tens of thousands of pre-defined constructs, resulting in a complexity challenging to handle. In contrast, custom sgRNA libraries comprise gene sets of self-defined content and size, facilitating experiments under complex conditions such as in vivo systems. To streamline and upscale cloning of custom libraries, we present CLUE, a bioinformatic and wet-lab pipeline for the multiplexed generation of pooled sgRNA libraries. CLUE starts from lists of genes or pasted sequences provided by the user and designs a single synthetic oligonucleotide pool containing various libraries. At the core of the approach, a barcoding strategy for unique primer binding sites allows amplifying different user-defined libraries from one single oligonucleotide pool. We prove the approach to be straightforward, versatile and specific, yielding uniform sgRNA distributions in all resulting libraries, virtually devoid of cross-contaminations. For in silico library multiplexing and design, we established an easy-to-use online platform at www.crispr-clue.de. All in all, CLUE represents a resource-saving approach to produce numerous high quality custom sgRNA libraries in parallel, which will foster their broad use across molecular biosciences.
The systematic perturbation of genomes using CRISPR/Cas9 deciphers gene function at an unprecedented rate, depth and ease. Commercially available sgRNA libraries typically contain tens of thousands of pre-defined constructs, resulting in a complexity challenging to handle. In contrast, custom sgRNA libraries comprise gene sets of self-defined content and size, facilitating experiments under complex conditions such as in vivo systems. To streamline and upscale cloning of custom libraries, we present CLUE, a bioinformatic and wet-lab pipeline for the multiplexed generation of pooled sgRNA libraries. CLUE starts from lists of genes or pasted sequences provided by the user and designs a single synthetic oligonucleotide pool containing various libraries. At the core of the approach, a barcoding strategy for unique primer binding sites allows amplifying different distinct libraries from one single oligonucleotide pool. We prove the approach to be straightforward, versatile and specific, yielding uniform sgRNA distributions in all resulting libraries, virtually devoid of cross-contaminations. For in silico library multiplexing and design, we established an easy-to-use online platform at www.crispr-clue.de.All in all, CLUE represents a resource-saving approach to produce numerous high quality custom sgRNA libraries in parallel, which will foster their broad use across molecular biosciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.