The multidrug resistance-associated protein 2 (MRP2, ABCC2), mediates the efflux of several conjugated compounds across the apical membrane of the hepatocyte into the bile canaliculi. We identified MRP2 in a screen designed to isolate genes that are regulated by the farnesoid X-activated receptor (FXR, NR1H4). MRP2 mRNA levels were induced following treatment of human or rat hepatocytes with either naturally occurring (chenodeoxycholic acid) or synthetic (GW4064) FXR ligands. In addition, we have shown that MRP2 expression is regulated by the pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3). Thus, treatment of rodent hepatocytes with PXR or CAR agonists results in a robust induction of MRP2 mRNA levels. The dexamethasone-and pregnenolone 16␣-carbonitrile-dependent induction of MRP2 expression was not evident in hepatocytes derived from PXR null mice. In contrast, induction of MRP2 by phenobarbital, an activator of CAR, was comparable in wild-type and PXR null mice. An unusual 26-bp sequence was identified 440 bp upstream of the MRP2 transcription initiation site that contains an everted repeat of the AGTTCA hexad separated by 8 nucleotides (ER-8). PXR, CAR, and FXR bound with high affinity to this element as heterodimers with the retinoid X receptor ␣ (RXR␣, NR2B1). Luciferase reporter gene constructs containing 1 kb of the rat MRP2 promoter were prepared and transiently transfected into HepG2 cells. Luciferase activity was induced in a PXR-, CAR-, or FXR-dependent manner. Furthermore, the isolated ER-8 element was capable of conferring PXR, CAR, and FXR responsiveness on a heterologous thymidine kinase promoter. Mutation of the ER-8 element abolished the nuclear receptor response. These studies demonstrate that MRP2 is regulated by three distinct nuclear receptor signaling pathways that converge on a common response element in the 5-flanking region of this gene.Members of the nuclear receptor superfamily of ligand-activated transcription factors have critical roles in many aspects of development and adult physiology, including cholesterol homeostasis, bile acid biosynthesis and transport, and xenobiotic metabolism. Recently, two orphan nuclear receptors, the farnesoid X-activated receptor (FXR, 1 NRIH4) and the pregnane X receptor (PXR, NR1I2) were shown to be activated by an overlapping spectrum of bile acids (1-5). These results indicate that bile acids function as hormonal ligands, in addition to their well established roles in the solubilization and absorption of lipids and fat-soluble vitamins from the intestinal lumen.
Apolipoprotein E (apoE) secreted by macrophages in the artery wall exerts an important protective effect against the development of atherosclerosis, presumably through its ability to promote lipid efflux. Previous studies have shown that increases in cellular free cholesterol levels stimulate apoE transcription in macrophages and adipocytes; however, the molecular basis for this regulation is unknown. Recently, Taylor and colleagues [Shih, S. J., Allan, C., Grehan, S., Tse, E., Moran, C. & Taylor, J. M. (2000) J. Biol. Chem. 275, 31567-31572] identified two enhancers from the human apoE gene, termed multienhancer 1 (ME.1) and multienhancer 2 (ME.2), that direct macrophage- and adipose-specific expression in transgenic mice. We demonstrate here that the nuclear receptors LXRalpha and LXRbeta and their oxysterol ligands are key regulators of apoE expression in both macrophages and adipose tissue. We show that LXR/RXR heterodimers regulate apoE transcription directly, through interaction with a conserved LXR response element present in both ME.1 and ME.2. Moreover, we demonstrate that the ability of oxysterols and synthetic ligands to regulate apoE expression in adipose tissue and peritoneal macrophages is reduced in Lxralpha-/- or Lxrbeta-/- mice and abolished in double knockouts. Basal expression of apoE is not compromised in Lxr null mice, however, indicating that LXRs mediate lipid-inducible rather than tissue-specific expression of this gene. Together with our previous work, these findings support a central role for LXR signaling pathways in the control of macrophage cholesterol efflux through the coordinate regulation of apoE, ABCA1, and ABCG1 expression.
The farnesoid X-activated receptor (FXR; NR1H4) is a member of the nuclear hormone receptor superfamily and functions as a heterodimer with the 9-cis-retinoic acid receptor (RXR) .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.