BackgroundType 2 diabetes mellitus (T2DM) is characterized by defects in insulin secretion and action. Impaired glucose uptake in skeletal muscle is believed to be one of the earliest features in the natural history of T2DM, although underlying mechanisms remain obscure.Methods and FindingsWe combined human insulin/glucose clamp physiological studies with genome-wide expression profiling to identify thioredoxin interacting protein (TXNIP) as a gene whose expression is powerfully suppressed by insulin yet stimulated by glucose. In healthy individuals, its expression was inversely correlated to total body measures of glucose uptake. Forced expression of TXNIP in cultured adipocytes significantly reduced glucose uptake, while silencing with RNA interference in adipocytes and in skeletal muscle enhanced glucose uptake, confirming that the gene product is also a regulator of glucose uptake. TXNIP expression is consistently elevated in the muscle of prediabetics and diabetics, although in a panel of 4,450 Scandinavian individuals, we found no evidence for association between common genetic variation in the TXNIP gene and T2DM.ConclusionsTXNIP regulates both insulin-dependent and insulin-independent pathways of glucose uptake in human skeletal muscle. Combined with recent studies that have implicated TXNIP in pancreatic β-cell glucose toxicity, our data suggest that TXNIP might play a key role in defective glucose homeostasis preceding overt T2DM.
A high-fat, high-calorie diet is associated with obesity and type 2 diabetes. However, the relative contribution of metabolic defects to the development of hyperglycaemia and type 2 diabetes is controversial. Accumulation of excess fat in muscle and adipose tissue in insulin resistance and type 2 diabetes may be linked with defective mitochondrial oxidative phosphorylation. The aim of the current study was to investigate acute effects of short-term fat overfeeding on glucose and insulin metabolism in young men. We studied the effects of 5 days' high-fat (60% energy) overfeeding (+50%) versus a control diet on hepatic and peripheral insulin action by a hyperinsulinaemic euglycaemic clamp, muscle mitochondrial function by 31 P magnetic resonance spectroscopy, and gene expression by qrt-PCR and microarray in 26 young men. Hepatic glucose production and fasting glucose levels increased significantly in response to overfeeding. However, peripheral insulin action, muscle mitochondrial function, and general and specific oxidative phosphorylation gene expression were unaffected by high-fat feeding. Insulin secretion increased appropriately to compensate for hepatic, and not for peripheral, insulin resistance. High-fat feeding increased fasting levels of plasma adiponectin, leptin and gastric inhibitory peptide (GIP). High-fat overfeeding increases fasting glucose levels due to increased hepatic glucose production. The increased insulin secretion may compensate for hepatic insulin resistance possibly mediated by elevated GIP secretion. Increased insulin secretion precedes the development of peripheral insulin resistance, mitochondrial dysfunction and obesity in response to overfeeding, suggesting a role for insulin per se as well GIP, in the development of peripheral insulin resistance and obesity.
Aims/hypothesis: People with low birthweight have an increased risk of developing type 2 diabetes mellitus in adulthood. The mechanistic basis of this phenomenon is not known. Here we investigate the effect of early growth restriction on the expression of insulin-signalling proteins in skeletal muscle in a human cohort and a rat model. Methods: We recruited 20 young men with low birthweight (mean birthweight 2702±202 g) and 20 age-matched control subjects (mean birthweight 3801± 99 g). Biopsies were obtained from the vastus lateralis muscle and protein expression of selected insulin-signalling proteins was determined. Rats used for this study were male offspring born to dams fed a standard (20%) protein diet or a low (8%) protein diet during pregnancy and lactation. Protein expression was determined in soleus muscle from adult offspring. Results: Low-birthweight subjects showed reduced muscle expression of protein kinase C (PKC)ζ, p85α, p110β and GLUT4. PKCζ, GLUT4 and p85 were also reduced in the muscle of rats fed a low-protein diet. Other proteins studied were unchanged in low-birthweight humans and in rats fed a low-protein diet when compared with control groups. Conclusions/interpretation: We found decreased expression of specific insulin-signalling proteins in low-birthweight subjects compared to controls. These changes precede the onset of impaired glucose tolerance. The similarity of protein expression profile in the men with low birthweight compared to that of the offspring of rats fed a low-protein diet suggests that the rodent model is an accurate representation of the human situation. It also provides a potential mechanistic explanation as to why the fetal environment plays an important role in determining risk of developing type 2 diabetes.
Objective: The pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) impairs insulin action in insulin-sensitive tissues, such as fat, muscle and endothelium, and causes endothelial dysfunction. We hypothesized that TNF-α blockade with etanercept could reverse vascular and metabolic insulin resistance. Method and Results: Twenty obese patients with type 2 diabetes were randomized to etanercept treatment (25 mg subcutaneously twice weekly for 4 weeks) or used as controls in an open parallel study. Forearm blood flow and glucose uptake were measured during intra-arterial infusions of serotonin, sodium nitroprusside and insulin co-infused with serotonin. β-Cell function was assessed with oral and intra-venous glucose tolerance tests and whole-body insulin sensitivity by hyperinsulinemic euglycemic clamps. Plasma levels of C-reactive protein and interleukin-6 decreased significantly with etanercept (C-reactive protein from 9.9 ± 3.1 to 4.8 ± 1.4 mg l–1, p = 0.04; interleukin-6 from 3.1 ± 0.4 to 1.9 ± 0.2 ng l–1, p = 0.03). Vasodilatory responses to serotonin and sodium nitroprusside infusions remained unchanged. Insulin effect on vasodilatation and on whole-body and forearm glucose uptake remained unchanged as well. β-Cell function tended to improve. Conclusion: Although short-term etanercept treatment had a significant beneficial effect on systemic inflammatory markers, no improvement of vascular or metabolic insulin sensitivity was observed.
Several studies have linked low birth weight (LBW) and type 2 diabetes. We investigated hepatic and peripheral insulin action including intracellular glucose metabolism in 40 19-year-old men (20 LBW, 20 matched control subjects), using the hyperinsulinemic-euglycemic clamp technique at two physiological insulin levels (10 and 40 mU/m 2 per min), indirect calorimetry, and [3-3 H]glucose. Insulin secretion was examined during an oral and intravenous glucose tolerance test. Fasting p-glucose was higher in the LBW group (5.6 ؎ 0.1 vs. 5.4 ؎ 0.1; P < 0.05). Basal plasma glycerol concentrations were significantly lower in the LBW group. Insulin-stimulated glycolytic flux was significantly reduced, and suppression of endogenous glucose production was enhanced in the LBW group. Nevertheless, basal and insulin-stimulated rates of whole-body peripheral glucose disposal, glucose oxidation, lipid oxidation, exogenous glucose storage, and nonoxidative glucose metabolism were similar in the two groups. Insulin secretion was reduced by 30% in the LBW group, when expressed relative to insulin sensitivity (disposition index ؍ insulin secretion ؋ insulin action). We propose that reduced insulin-stimulated glycolysis precedes overt insulin resistance in LBW men. A lower insulin secretion may contribute to impaired glucose tolerance and ultimately lead to diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.