BackgroundThe alignment of ipsilaterally and contralaterally projecting retinal axons that view the same part of visual space is fundamental to binocular vision. While much progress has been made regarding the mechanisms which regulate contralateral topography, very little is known of the mechanisms which regulate the mapping of ipsilateral axons such that they align with their contralateral counterparts.ResultsUsing the advantageous model provided by the mouse retinocollicular pathway, we have performed anterograde tracing experiments which demonstrate that ipsilateral retinal axons begin to form terminal zones (TZs) in the superior colliculus (SC), within the first few postnatal days. These appear mature by postnatal day 11. Importantly, TZs formed by ipsilaterally-projecting retinal axons are spatially offset from those of contralaterally-projecting axons arising from the same retinotopic location from the outset. This pattern is consistent with that required for adult visuotopy. We further demonstrate that a member of the Ten-m/Odz/Teneurin family of homophilic transmembrane glycoproteins, Ten-m3, is an essential regulator of ipsilateral retinocollicular topography. Ten-m3 mRNA is expressed in a high-medial to low-lateral gradient in the developing SC. This corresponds topographically with its high-ventral to low-dorsal retinal gradient. In Ten-m3 knockout mice, contralateral ventrotemporal axons appropriately target rostromedial SC, whereas ipsilateral axons exhibit dramatic targeting errors along both the mediolateral and rostrocaudal axes of the SC, with a caudal shift of the primary TZ, as well as the formation of secondary, caudolaterally displaced TZs. In addition to these dramatic ipsilateral-specific mapping errors, both contralateral and ipsilateral retinocollicular TZs exhibit more subtle changes in morphology.ConclusionsWe conclude that important aspects of adult visuotopy are established via the differential sensitivity of ipsilateral and contralateral axons to intrinsic guidance cues. Further, we show that Ten-m3 plays a critical role in this process and is particularly important for the mapping of the ipsilateral retinocollicular pathway.
The striatum is the key input nucleus of the basal ganglia, and is implicated in motor control and learning. Despite the importance of striatal circuits, the mechanisms associated with their development are not well established. Previously, Ten-m3, a member of the Ten-m/teneurin/odz family of transmembrane glycoproteins, was found to be important in the mapping of binocular visual pathways. Here, we investigated a potential role for Ten-m3 in striatal circuit formation. In situ hybridisation revealed a patchy distribution of Ten-m3 mRNA expression superimposed on a high-dorsal to low-ventral gradient in a subregion of the striatal matrix. A survey of afferent/efferent structures associated with the matrix identified the parafascicular thalamic nucleus (PF) as a potential locus of action. Ten-m3 was also found to be expressed in a high-dorsal to low-ventral gradient in the PF, corresponding topographically to its expression in the striatum. Further, a subset of thalamic terminal clusters overlapped with Ten-m3-positive domains within the striatal matrix. Studies in wild-type (WT) and Ten-m3 knockout (KO) mice revealed no differences in overall striatal or PF structure. Thalamostriatal terminals in KOs, however, while still confined to the matrix subregion, lost their clustered appearance. Topography was also altered, with terminals from the lateral PF projecting ectopically to ventral and medial striatum, rather than remaining confined dorsolaterally as in WTs. Behaviorally, Ten-m3 KOs displayed delayed motor skill acquisition. This study demonstrates that Ten-m3 plays a key role in directing the formation of thalamostriatal circuitry, the first molecular candidate reported to regulate connectivity within this pathway.
Highlights d Long-term in vivo imaging of dendrite differentiation with automated quantitation d Anterograde-polymerizing microtubules subdivide the dendrite tip to create branches d Actin motor Myosin6 stabilizes filopodia-derived actin tails to guide microtubules d Transcription factor Knot regulates Myosin6 for dendrite arbor diversification
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.