Reinforcement Learning has shown success in a number of complex virtual environments. However, many challenges still exist towards solving problems with natural language as a core component. Interactive Fiction Games (or Text Games) are one such problem type that offer a set of safe, partially observable environments where natural language is required as part of the Reinforcement Learning solution. Therefore, this survey’s aim is to assist in the development of new Text Game problem settings and solutions for Reinforcement Learning informed by natural language. Specifically, this survey: 1) introduces the challenges in Text Game Reinforcement Learning problems, 2) outlines the generation tools for rendering Text Games and the subsequent environments generated, and 3) compares the agent architectures currently applied to provide a systematic review of benchmark methodologies and opportunities for future researchers.
Reinforcement Learning has shown success in a number of complex virtual environments. However, many challenges still exist towards solving problems with natural language as a core component. Interactive Fiction Games (or Text Games) are one such problem type that offer a set of partially observable environments where natural language is required as part of the reinforcement learning solutions. Therefore, this survey's aim is to assist in the development of new Text Game problem settings and solutions for Reinforcement Learning informed by natural language. Specifically, this survey summarises: 1) the challenges introduced in Text Game Reinforcement Learning problems, 2) the generation tools for evaluating Text Games and the subsequent environments generated and, 3) the agent architectures currently applied are compared to provide a systematic review of benchmark methodologies and opportunities for future researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.