Obesity-related hepatic steatosis is a major risk factor for metabolic and cardiovascular disease. Fat reduced hypocaloric diets are able to relieve the liver from ectopically stored lipids. We hypothesized that the widely used low carbohydrate hypocaloric diets are similarly effective in this regard. A total of 170 overweight and obese, otherwise healthy subjects were randomized to either reduced carbohydrate (n 5 84) or reduced fat (n 5 86), total energy restricted diet (230% of energy intake before diet) for 6 months. Body composition was estimated by bioimpedance analyses and abdominal fat distribution by magnetic resonance tomography. Subjects were also submitted to fat spectroscopy of liver and oral glucose tolerance testing. In all, 102 subjects completed the diet intervention with measurements of intrahepatic lipid content. Both hypocaloric diets decreased body weight, total body fat, visceral fat, and intrahepatic lipid content. Subjects with high baseline intrahepatic lipids (>5.56%) lost %7-fold more intrahepatic lipids compared with those with low baseline values (<5.56%) irrespective of diet composition. In contrast, changes in visceral fat mass and insulin sensitivity were similar between subgroups, with low and high baseline intrahepatic lipids. Conclusion: A prolonged hypocaloric diet low in carbohydrates and high in fat has the same beneficial effects on intrahepatic lipid accumulation as the traditional low-fat hypocaloric diet. The decrease in intrahepatic lipids appears to be independent of visceral fat loss and is not tightly coupled with changes in whole body insulin sensitivity during 6 months of an energy restricted diet. (HEPATOLOGY 2011;53:1504-1514
This article is available online at http://www.jlr.org Cytochrome P450 (CYP) enzymes catalyze the formation of biologically active epoxy-and hydroxy-metabolites of long-chain PUFAs ( 1 ). Traditionally, and in line with the prevalence of n-6 PUFAs in the "Western diet", arachidonic acid (AA) (20:4 n-6) has been considered as the main precursor and the corresponding metabolites were categorized as a subclass of eicosanoids ( 2 ). CYP-eicosanoid formation is also known as the "third branch of the AA cascade," complementary to the previously discovered cyclooxygenase (COX)-and lipoxygenase (LOX)-initiated pathways of prostanoid and leukotriene formation ( 3, 4 ).Physiologically important AA-derived CYP-eicosanoids include a set of regio-and stereoisomeric epoxyeicosatrienoic acids (EETs) and 20-HETE ( 2, 5 ). EETs and 20-HETE play partially opposing roles in the regulation of vascular, renal, and cardiac function ( 6-9 ). The contribution of EETs to cardiovascular function is infl uenced by the soluble epoxide hydrolase (sEH) that metabolizes EETs to less potent dihydroxyeicosatrienoic acids (DHETs) ( 10 ). Imbalances in CYP-eicosanoid formation are linked to the development of endothelial dysfunction and hypertension; ischemia-induced injury of the heart, kidney and brain; infl ammatory disorders; and atherosclerosis (11)(12)(13)(14)(15)(16)(17).Recent studies demonstrated that the same CYP isoforms that epoxidize or hydroxylate AA, also effi ciently metabolize
Reducing the amount of Helicobacter pylori in the stomach by selective bacterial–bacterial cell interaction was sought as an effective and novel method for combating the stomach pathogen. Lactobacillus reuteri DSM17648 was identified as a highly specific binding antagonist to H. pylori among more than 700 wild-type strains of Lactobacillus species. Applying a stringent screening procedure, the strain DSM17648 was identified as selective binder to H. pylori cells under in vivo gastric conditions. The strain DSM17648 co-aggregates the pathogen in vivo and in vitro. The specific co-aggregation occurs between Lact. reuteri DSM17648 and different H. pylori strains and serotypes, as well as H. heilmannii, but not with Campylobacter jejuni or other commensal oral and intestinal bacteria. Lact. reuteri DSM17648 was shown in a proof-of-concept single-blinded, randomized, placebo-controlled pilot study to significantly reduce the load of H. pylori in healthy yet infected adults. Reducing the amount of H. pylori in the stomach by selective bacterial–bacterial cell interaction might be an effective and novel method for combating the stomach pathogen. Lact. reuteri DSM17648 might prove useful as an adhesion blocker in antibiotic-free H. pylori therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.