The modification of achira starch a thermoplastic biopolymer is shown. Glycerol and sorbitol, common plasticizers, were used in the molten state with organic acids such as oleic acid and lactic acid obtaining thermodynamically more stable products. The proportion of starch:plasticizer was 70:30, and the acid agent was added in portions from 3%, 6%, and 9% by weight. These mixtures were obtained in a torque rheometer for 10 min at 130 °C. The lactic acid managed to efficiently promote the gelatinization process by increasing the available polar sites towards the surface of the material; as a result, there were lower values in the contact angle, these results were corroborated with the analysis performed by differential scanning calorimetry and X-ray diffraction. The results derived from oscillatory rheological analysis had a viscous behavior in the thermoplastic starch samples and with the presence of acids; this behavior favors the transitions from viscous to elastic. The mixture of sorbitol or glycerol with lactic acid promoted lower values of the loss module, the storage module, and the complex viscosity, which means lower residual energy in the transition of the viscous state to the elastic state; this allows the compounds to be scaled to conventional polymer transformation processes.
In this work, we present a functionalization strategy of starch-poly(lactic acid) (PLA) blends with organic acids. Lactic and acetic acid were used as acid agents, and oleic acid was also included in the previous acids, with the aim of finding a synergy that thermodynamically benefits the products and provides hydrophobicity. The ratio of starch and sorbitol was 70:30, and the added acid agent replaced 6% of the plasticizer; meanwhile, the thermoplastic starch (TPS)–PLA blend proportion was 70:30 considering the modified TPS. The mixtures were obtained in a torque rheometer at 50 rpm for 10 min at 150 °C. The organic acids facilitated interactions between TPS and PLA. Although TPS and PLA are not miscible, PLA uniformly dispersed into the starch matrix. Furthermore, a reduction in the surface polarity was achieved, which enabled the wettability to reach values close to those of neat PLA (TPS–L-PLA increased by 55% compared to TPS–PLA). The rheological results showed a modulus similar to that of TPS. In general, there were transitions from elastic to viscous, in which the viscous phase predominated. The first and second-order thermal transitions did not show significant changes. The structural affinity of lactic acid with biopolymers (TPS–L-PLA) allowed a greater interaction and was corroborated with the mechanical properties, resulting in a greater resistance with respect to pure TPS and blended TPS–PLA (28.9%). These results are particularly relevant for the packaging industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.