The U6 RNA intramolecular stem-loop (ISL) structure is an essential component of the spliceosome and binds a metal ion required for pre-messenger RNA splicing. The metal binding internal loop region of the stem contains a partially protonated C67-(+)A79 base pair (pK(a) = 6.5) and an unpaired U80 nucleotide that is stacked within the helix at pH 7.0. Here, we determine that protonation occurs with an exchange lifetime of approximately 20 micros and report the solution structures of the U6 ISL at pH 5.7. The differences between pH 5.7 and 7.0 structures reveal that the pH change significantly alters the RNA conformation. At lower pH, U80 is flipped out into the major groove. Base flipping involves a purine stacking interaction of flanking nucleotides, inversion of the sugar pucker 5' to the flipped base, and phosphodiester backbone rearrangement. Analysis of residual dipolar couplings as a function of pH indicates that base flipping is not restricted to a local conformational change. Rather, base flipping alters the alignment of the upper and lower helices. The alternative conformations of the U6 ISL reveal striking structural similarities with both the NMR and crystal structures of domain 5 of self-splicing group II introns. These structures suggest that base flipping at an essential metal binding site is a conserved feature of the splicing machinery for both the spliceosome and group II self-splicing introns.
Recent progress from our laboratories to determine structures of small membrane proteins (up to 20 kDa) in detergent micelles by solution nuclear magnetic resonance (NMR) is reviewed. NMR opens a new window to also study, for the ¢rst time, the dynamics of membrane proteins. We report on recent attempts to correlate dynamic measurements on OmpA with the ion channel function of this protein. We also summarize how NMR and spin-label electron paramagnetic resonance spectroscopy and selective mutagenesis can be combined to provide a structural basis towards understanding the mechanism of in£u-enza hemagglutinin-mediated membrane fusion.
C atoms were collected from the six brazzein proteins labeled uniformly with carbon-13 and nitrogen-15. In wild-type brazzein, this approach identified 17 backbone hydrogen bonds. In the mutants, altered magnitudes of the couplings identified hydrogen bonds that were strengthened or weakened; missing couplings identified hydrogen bonds that were broken, and new couplings indicated the presence of new hydrogen bonds. Within the series of brazzein mutants investigated, a pattern was observed between sweetness and the integrity of particular hydrogen bonds. All three "sweet" variants exhibited the same pattern of hydrogen bonds, whereas all three "non-sweet" variants lacked one hydrogen bond at the middle of the ␣-helix, where it is kinked, and one hydrogen bond in the middle of -strands II and III, where they are twisted. Two of the non-sweet variants lack the hydrogen bond connecting the N and C termini. These variants showed greater mobility in the Nand C-terminal regions than wild-type brazzein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.