In comparison to secondary lymphoid organs, gut-associated lymphoid tissues such as isolated lymphoid follicles (ILF) and cryptopatches (CP) have been less intensively studied. To gain a better insight into processes regulating organization and function of these structures, which are believed to participate in immune responses and extrathymic T cell development, we characterized the lymphoid structures of the murine small intestine in more detail. The size and cellular composition of small intestinal lymphoid aggregations were analyzed in C57BL/6 and BALB/c wild-type and lymphotoxin (LT)-deficient mice, by flow cytometry, histology and automated multi-color immunofluorescence microscopy evaluating large coherent areas of the intestine. These evaluations demonstrate that aggregated lymphoid structures in the small intestine vary in size and cellular composition, with a majority of structures not matching the current definitions of CP or ILF. Accordingly, significant variations depending on species, age and mouse strain were observed. Furthermore, small bowel transplantation revealed a rapid exchange of B but not T cells between host and grafted tissue. Moreover, LTdeficient animals lack any intestinal lymphoid aggregations yet possess the complete panel of intraepithelial lymphocytes (IEL). In summary, our observations disclose intestinal lymphoid aggregations as dynamic structures with a great deal of inborn plasticity and demonstrate their dispensability for the generation of IEL.
Besides Peyer’s patches, solitary intestinal lymphoid tissue (SILT) provides a structural platform to efficiently initiate immune responses in the murine small intestine. SILT consists of dynamic lymphoid aggregates that are heterogeneous in size and composition, ranging from small clusters of mostly lineage-negative cells known as cryptopatches to larger isolated lymphoid follicles rich in B cells. In this study, we report that in chemokine receptor CCR7-deficient mice SILT is enlarged, although unchanged in frequency and cellular composition compared with wild-type mice. This phenotype is conferred by bone marrow-derived cells and is independent of the presence of intestinal bacteria. Remarkably, particularly small-sized SILT predominates in germfree wild-type mice. Colonization of wild-type mice with commensal bacteria provokes an adjustment of the spectrum of SILT to that observed under specific pathogen-free conditions by the conversion of pre-existing lymphoid structures into larger-sized SILT. In conclusion, our findings establish that intestinal microbes influence the manifestation of gut-associated lymphoid tissues and identify CCR7 signaling as an endogeneous factor that controls this process.
In humans with typhoid fever or in mouse strains susceptible to Salmonella enterica serovar Typhimurium (S. Typhimurium) infection, bacteria gain access to extraintestinal tissues, causing severe systemic disease. Here we show that in the gut-draining mesenteric lymph nodes (MLN), the majority of S.
FGF2 or FGF8 applied ectopically, close to the developing otic placode enhances transcription of a subset of ear marker genes such as Nkx5-1, SOHo1 and Pax2. Other ear expressed genes (Dlx5 and BMP4) are not up-regulated by FGFs. Ectopic FGFs lead to an increase in size of the vestibulo-cochlear ganglion. This phenotypic change is due to an increased recruitment of epithelial cells to the neuronal fate rather than to an enhanced proliferation. We also observed an induction of additional, vesicle-like structures upon ectopic FGF treatment, but this induction never led to enrolment of a full ear program. We further demonstrate that FGF8 is expressed in two separate, short waves, first at the otic placode stage and later at the vesicle stage. Both activities correspond to critical morphogenetic events in ear development. We propose that FGF8 is an important regulator of otocyst patterning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.