Ab-dependent polymorphonuclear granulocyte (PMN)-mediated cytotoxicity may play an important role in the control of malignant diseases. However, little is known as to which particular pathways are used for the killing of malignant cells by PMN. The production of reactive oxygen intermediates (ROI) has been observed to occur during Ab-dependent, cell-mediated cytotoxicity (ADCC). However, PMN from a patient with chronic granulomatous disease demonstrated strong ADCC against malignant lymphoma cells. Furthermore, the inhibition of ROI production in PMN from healthy donors had no significant effect on ADCC. Therefore, ROI production by the NADPH oxidase of PMN does not appear to be mandatory for PMN-mediated ADCC. Recent data suggest a role for perforins in PMN-mediated cytotoxicity. However, in our assays concanamycin A, an inhibitor of perforin-mediated ADCC by mononuclear cells, had no inhibitory effect on PMN-mediated ADCC. Using electron microscopy we observed that PMN and their target cells intimately interact with the formation of interdigitating membrane protrusions. During PMN and target cell contact there was a mutual exchange of fluorescent membrane lipid dyes that was strongly increased in the presence of tumor-targeting Abs. This observation may be closely related to the recently described process of trogocytosis by lymphocytes. The presence of transient PMN-tumor cell aggregates and the accumulation of PMN with tumor cell-derived membrane lipids and vice versa were associated with effective ADCC as measured by chromium-release or apoptosis induction.
Bispecific Abs offer new perspectives for cancer immunotherapy. In this study, we describe a recombinant bispecific single-chain fragment variable (bsscFv) directed against FcαRI (CD89) on polymorphonuclear neutrophils (PMNs) or monocytes/macrophages and HLA class II on lymphoma target cells. FcαRI and HLA class II-directed single-chain fragment variable (scFv) fragments were isolated from phage display libraries, established from the hybridomas A77 and F3.3, respectively. The two scFv molecules were connected with a 20 aa flexible linker sequence. After expression in SF21 insect cells and chromatographic purification, the bispecific molecule showed specific binding to both Ags at KD values of 148 ± 42 nM and 113 ± 25 nM for the anti-FcαRI and anti-HLA class II scFv components in the bsscFv, respectively. In Ab-dependent cytotoxicity assays with PMNs as effectors and a series of lymphoma-derived cell lines (ARH-77, RAJI, REH, NALM-6, RS4;11), the bsscFv was significantly more cytotoxic than the parental murine IgG1 and its chimeric IgG1 derivative. When targeting primary tumor cell isolates from six patients with B cell malignancies, the killing capacity of the (FcαRI × HLA class II) bsscFv compared favorably to conventional HLA class II mAb. Importantly, the cell lines NALM-6 and RS411, as well as two primary tumor cell isolates, were exclusively lysed by the bsscFv. To our knowledge, this is the first report of an FcαRI-directed bsscFv effectively recruiting PMNs for redirected cytotoxicity against human B cell malignancies. Our data show that an (FcαRI × HLA class II) bsscFv is an interesting candidate for further engineering of small, modular immunopharmaceuticals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.