We present a novel method to visualize multidimensional point clouds. While conventional visualization techniques, like scatterplot matrices or parallel coordinates, have issues with either overplotting of entities or handling many dimensions, we abstract the data using topological methods before presenting it. We assume the input points to be samples of a random variable with a high-dimensional probability distribution which we approximate using kernel density estimates on a suitably reconstructed mesh. From the resulting scalar field we extract the join tree and present it as a topological landscape, a visualization metaphor that utilizes the human capability of understanding natural terrains. In this landscape, dense clusters of points show up as hills. The nesting of hills indicates the nesting of clusters. We augment the landscape with the data points to allow selection and inspection of single points and point sets. We also present optimizations to make our algorithm applicable to large data sets and to allow interactive adaption of our visualization to the kernel window width used in the density estimation.
The visualization and exploration of multivariate data is still a challenging task. Methods either try to visualize all variables simultaneously at each position using glyph-based approaches or use linked views for the interaction between attribute space and physical domain such as brushing of scatterplots. Most visualizations of the attribute space are either difficult to understand or suffer from visual clutter. We propose a transformation of the high-dimensional data in attribute space to 2D that results in a point cloud, called attribute cloud, such that points with similar multivariate attributes are located close to each other. The transformation is based on ideas from multivariate density estimation and manifold learning. The resulting attribute cloud is an easy to understand visualization of multivariate data in two dimensions. We explain several techniques to incorporate additional information into the attribute cloud, that help the user get a better understanding of multivariate data. Using different examples from fluid dynamics and climate simulation, we show how brushing can be used to explore the attribute cloud and find interesting structures in physical space.
Salience detection is a principle mechanism to facilitate visual attention. A good visualization guides the observer's attention to the relevant aspects of the representation. Hence, the distribution of salience over a visualization image is an essential measure of the quality of the visualization. We describe a method for computing such a metric for a visualization image in the context of a given dataset. We show how this technique can be used to analyze a visualization's salience, improve an existing visualization, and choose the best representation from a set of alternatives. The usefulness of this proposed metric is illustrated using examples from information visualization, volume visualization and flow visualization.
Abstract-Due to its nonlinear nature, the climate system shows quite high natural variability on different time scales, including multiyear oscillations such as the El Niño Southern Oscillation phenomenon. Beside a shift of the mean states and of extreme values of climate variables, climate change may also change the frequency or the spatial patterns of these natural climate variations. Wavelet analysis is a well established tool to investigate variability in the frequency domain. However, due to the size and complexity of the analysis results, only few time series are commonly analyzed concurrently. In this paper we will explore different techniques to visually assist the user in the analysis of variability and variability changes to allow for a holistic analysis of a global climate model data set consisting of several variables and extending over 250 years. Our new framework and data from the IPCC AR4 simulations with the coupled climate model ECHAM5/MPI-OM are used to explore the temporal evolution of El Niño due to climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.