The authors performed a retrospective study to determine the incidences and range of spontaneous pathology findings in control cynomolgus monkeys. Data were collected from 570 monkeys (285 animals per sex), aged twelve to thirty-six months, from sixty regulatory studies evaluated at our laboratory between 2003 and 2009. The most common finding overall was lymphoplasmacytic infiltrates observed in the following incidence: liver (60.7%), kidneys (28.8%), heart (25.8%), salivary glands (21.2%), and stomach (12.1%). Inflammation also commonly occurred in the heart, kidneys, lungs, and stomach. The most common degenerative changes were localized fatty change in the liver, myocardial degeneration, and mineralization and pigment deposits in various tissues. Parathyroid, thyroid, and pituitary cysts; ectopic thymus in the parathyroid or thyroid gland; accessory spleen within the pancreas; and adrenohepatic fusion were among the most common congenital findings. Some incidental findings bearing similarities to drug-induced lesions were also encountered in various organs. It is hoped that the results presented here and elsewhere could form the groundwork for the creation of a reliable database of incidental pathology findings in laboratory nonhuman primates.
The mammary gland of laboratory rodents is an important organ for the evaluation of effects of xenobiotics, especially those that perturb hormonal homeostasis or are potentially carcinogenic. Mammary gland cancer is a leading cause of human mortality and morbidity worldwide and is a subject of major research efforts utilizing rodent models. Zymbal's, preputial, and clitoral glands are standard tissues that are evaluated in animal models that enable human risk assessment of xenobiotics. A widely accepted and utilized international harmonization of nomenclature for mammary, Zymbal's, preputial, and clitoral gland lesions in laboratory animals will improve diagnostic alignment among regulatory and scientific research organizations and enrich international exchanges of information among toxicologists and pathologists.
With advancements in whole slide imaging technology and improved understanding of the features of pathologist workstations required for digital slide evaluation, many institutions are investigating broad digital pathology adoption. The benefits of digital pathology evaluation include remote access to study or diagnostic case materials and integration of analysis and reporting tools. Diagnosis based on whole slide images is established in human medical pathology, and the use of digital pathology in toxicologic pathology is increasing. However, there has not been broad adoption in toxicologic pathology, particularly in the context of regulatory studies, due to lack of precedence. To address this topic, as well as practical aspects, the European Society of Toxicologic Pathology coordinated an expert international workshop to assess current applications and challenges and outline a set of minimal requirements needed to gain future regulatory acceptance for the use of digital toxicologic pathology workflows in research and development, so that toxicologic pathologists can benefit from digital slide technology.
While conventional parameters used to detect hepatotoxicity in drug safety assessment studies are generally informative, the need remains for parameters that can detect the potential for hepatotoxicity at lower doses and/or at earlier time points. Previous work has shown that metabolite profiling (metabonomics/metabolomics) can detect signals of potential hepatotoxicity in rats treated with doxorubicin at doses that do not elicit hepatotoxicity as monitored with conventional parameters. The current study extended this observation to the question of whether such signals could be detected in rats treated with compounds that can elicit hepatotoxicity in humans (i.e., drug-induced liver injury, DILI) but have not been reported to do so in rats. Nine compounds were selected on the basis of their known DILI potential, with six other compounds chosen as negative for DILI potential. A database of rat plasma metabolite profiles, MetaMap(®)Tox (developed by metanomics GmbH and BASF SE) was used for both metabolite profiles and mode of action (MoA) metabolite signatures for a number of known toxicities. Eight of the nine compounds with DILI potential elicited metabolite profiles that matched with MoA patterns of various rat liver toxicities, including cholestasis, oxidative stress, acetaminophen-type toxicity and peroxisome proliferation. By contrast, only one of the six non-DILI compounds showed a weak match with rat liver toxicity. These results suggest that metabolite profiling may indeed have promise to detect signals of hepatotoxicity in rats treated with compounds having DILI potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.