For the evaluation and quantification of follicular penetration processes, the knowledge of variations of hair follicle parameters in different body sites is basic. Characteristics of follicle sizes and potential follicular reservoir were determined in cyanoacrylate skin surface biopsies, taken from seven different skin areas (lateral forehead, back, thorax, upper arm, forearm, thigh, and calf region). The highest hair follicle density and percentage of follicular orifices on the skin surface and infundibular surface were found on the forehead, whereas the highest average size of the follicular orifices was measured in the calf region. The highest infundibular volume and therefore a potential follicular reservoir was calculated for the forehead and for the calf region, although the calf region showed the lowest hair follicle density. The calculated follicular volume of these two skin areas was as high as the estimated reservoir of the stratum corneum. The lowest values for every other parameter were found on the forearm. The present investigation clearly contradicts former hypothesis that the amount of appendages of the total skin surface represents not more than 0.1%. Every body region disposes its own hair follicle characteristics, which, in the future, should lead us to a differential evaluation of skin penetration processes and a completely different understanding of penetration of topically applied drugs and cosmetics.
The transfollicular administration of pharmacologically active molecules is of current therapeutic interest, mainly with regard to delivery to specific sites of the hair follicle (HF) and the reduction of hepatic metabolism and systemic toxicity. HF are privileged pathways for specific molecules depending on formulations, which enter faster into these shunts than through the stratum corneum. The aim was to optimize the delivery of fluorescent microspheres into the HF, thereby, developing a standardized protocol for follicular targeting with microspheres. The number of HF showing penetration, as well as the depth of penetration, was determined. Freshly excised skin samples with terminal HF were divided into groups, with or without prior treatment with cyanoacrylate skin surface stripping-technique (CSSS). Thereafter microspheres at a size of 0.75-6.0 microm were applied according to the developed standardized protocol. Skin biopsies were obtained, shock-frozen, and sectioned in 5 microm slices. We demonstrated a selective penetration route of the microspheres into the HF. Optimal microsphere size proved to be approximately 1.5 microm, with a 55% rate of all HF, and with a maximum penetration depth of >2300 microm. Without previous CSSS treatment of the skin, the transfollicular microsphere penetration was below 27% with a maximum penetration depth of 1000 microm. Thus, the basis for follicular targeting of essential structures containing stem cells for keratinocytes, melanocytes, and mast cells has been laid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.