The intrafollicular levels of oxidized low-density lipoprotein (oxLDL) and of enzyme antioxidants might contribute to reproductive disorders in obese and infertile women. Relevant data are missing. Eighty-four patients were grouped according to obese versus non-obese status and whether they had polycystic ovary syndrome (PCOS). The concentrations of oxLDL and the activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione reductase (GR) in the serum and follicular fluid were measured. Obese women with and without PCOS had significantly greater amounts of oxLDL in the follicular fluid as compared with non-obese women. The level of oxLDL in the follicular fluid was 1000 times lower than in serum. Obese women with and without PCOS had significantly higher catalase activity in the follicular fluid as compared with non-obese women. No differences were found for the SOD activity in the follicular fluid. The GPx and GR activities were up-regulated in obese patients without and with PCOS, yet not in respect to each serum and follicular fluid sample. We conclude that elevated levels of oxLDL in the follicular fluid of obese women are associated with higher catalase activity; both parameters are independent of PCOS. The levels of oxLDL and catalase activity appear to indicate different degrees of oxidative stress.
The morphology of sciatic nerves from leptin-deficient ob/ob mice and leptin receptor-deficient db/db mice, both models for obesity, peripheral diabetic neuropathy, and the metabolic syndrome, has yet to be examined for changes in nerve fibers and in endoneural microvessels. Sciatic nerves from three groups of 4-month-old mice (WT C57BL6, ob/ob, and db/db) were investigated. In ultrathin sections, the thickness of myelin sheaths was significantly reduced in small, medium-sized, and large axons of db/db mice compared with WT mice. In ob/ob mice, only large fibers showed a decrease in myelin sheath thickness. The number of nonmyelinated nerve fibers was lower in ob/ob mice than in the db/db group. A thickened basal lamina of Schwann cells occurred in the ob/ob group only. In contrast, the basement membrane of endoneural microvessels was thickened in both obese groups. For this reason, laminin expression in Western blot analysis was lower in the db/db group than in the ob/ob one. Endoneural microvessels, which had been injected with fluorescein isothiocyanate, depicted signs of vasodilatation in the ob/ob and vasoconstriction in db/db mice. Endoneural vessels displayed two receptors of oxLDL. LOX-1 was strongly expressed in db/db mice, whereas TLR4 was at its maximum in the ob/ob group. We conclude that changes in nerve fibers and in endoneural microvessels are present in sciatic nerve of both mouse models of type 2 diabetes. Upregulation of oxLDL-dependent receptors in endoneural microvessels might be connected to different degrees of oxidative stress in severe diabetic db/db mice and in the mild diabetic ob/ob group.
Autophagic cell death has been observed in granulosa cell cultures via the oxLDL-dependent activation of lectin-like oxidized low density lipoprotein receptor 1 (LOX-1). This activation might differ for cytokeratin-positive (CK(+)) and CK(-) granulosa cells. In particular, LOX-1 and toll-like receptor 4 (TLR4), one of the pattern recognition receptors of innate immunity, might be diversely regulated. Granulosa cell subtype cultures were established from the follicle harvests of patients undergoing in vitro fertilization (IVF) therapy. In response to oxLDL treatment, the fibroblast-like CK(-) cells upregulated LOX-1 and exhibited reparative autophagy, which could be blocked with anti-LOX-1 antibody. The epithelioid-like CK(+) cells did not regulate LOX-1 expression upon oxLDL application, but the expression of TLR4 and CD14 increased between 0 and 36 h of oxLDL/nDL treatment. This upregulation was associated with nonapoptotic cell death based on the absence of cleaved caspase-3. Reactive oxygen species (ROS) increased with 12 h oxLDL application and steroidogenic acute regulatory (StAR) protein expression was negligible. In CK(-) cells, the inhibition of TLR4 downregulated LOX-1 and induced apoptosis. We concluded that CK(-) granulosa cells are protected against oxLDL-dependent apoptosis by TLR4, whereas, in CK(+) cells, oxLDL-induced TLR4 activation triggers nonapoptotic cell death. The CK(+) cells might represent immune-like granulosa cells involved in ovarian remodeling processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.