A distinctive subtype of t(14;18)-negative nodal follicular non-Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36
Deletions in the short arm of chromosome 17 (17p) involving the tumor suppressor TP53 occur in up to 20% of diffuse large B-cell lymphomas (DLBCLs). Although inactivation of both alleles of a tumor suppressor gene is usually required for tumor development, the overlap between TP53 deletions and mutations is poorly understood in DLBCLs, suggesting the possible existence of additional tumor suppressor genes in 17p. Using a bacterial artificial chromosome (BAC) and Phage 1 artificial chromosome (PAC) contig, we here define a minimally deleted region in DLBCLs encompassing approximately 0.8 MB telomeric to the TP53 locus. This genomic region harbors the tumor suppressor Hypermethylated in Cancer 1 (HIC1). Methylation-specific PCR demonstrated hypermethylation of HIC1 exon 1a in a substantial subset of DLBCLs, which is accompanied by simultaneous HIC1 deletion of the second allele in 90% of cases. In contrast, HIC1 inactivation by hypermethylation was rarely encountered in DLBCLs without concomitant loss of the second allele. DLBCL patients with complete inactivation of both HIC1 and TP53 may be characterized by an even inferior clinical course than patients with inactivation of TP53 alone, suggesting a functional cooperation between these two proteins. These findings strongly imply HIC1 as a novel tumor suppressor in a subset of DLBCLs.
Summary
Mantle cell lymphoma (MCL) is an aggressive lymphoid tumour characterized by the translocation t(11;14)(q13;q32) and a poor clinical outcome (median survival: 3–4 years). Recent studies revealed that increased proliferation of the tumour cells and certain chromosomal aberrations, such as deletions of 17p13 and 9p21 represent major adverse biological markers in this disease, although the molecular targets of chromosomal imbalances in MCL have not been identified for the large majority of loci affected. To correlate histomorphological and proliferation features of MCL with genetic findings, we investigated 223 MCL by fluorescence in situ hybridization (FISH) (n = 157) and/or classical cytogenetic banding analysis (n = 129). FISH analysis turned out to be distinctly more sensitive in the delineation of aberrations. Complex karyotypic alterations were associated with higher proliferation indices and inferior prognosis. A comprehensive analysis of biological features including genetic alterations in MCL by hierarchical clustering resulted in the delineation of four tumour subgroups differing with respect to their genetic constitution and suggesting different transformation or progression pathways. Moreover, in one of the groups identified, a more indolent clinical behaviour was associated with few secondary aberrations and fewer known high‐risk chromosomal aberrations, which points to the importance of the quality of karyotypic evolution in MCL tumours.
Mantle cell lymphomas (MCL), characterized by the t(11;14)(q13;q32), frequently carry secondary genetic alterations such as deletions in chromosome 17p involving the TP53 locus. Given that the association between TP53-deletions and concurrent mutations of the remaining allele is weak and based on our recent report that the Hypermethylated in Cancer 1 (HIC1) gene, that is located telomeric to the TP53 gene, may be targeted by deletions in 17p in diffuse large B-cell lymphoma (DLBCL), we investigated whether HIC1 inactivations might also occur in MCL. Monoallelic deletions of the TP53 locus were detected in 18 out of 59 MCL (31%), while overexpression of p53 protein occurred in only 8 out of 18 of these MCL (44%). In TP53-deleted MCL, the HIC1 gene locus was co-deleted in 11 out of 18 cases (61%). However, neither TP53 nor HIC1 deletions did affect survival of MCL patients. In most analyzed cases, no hypermethylation of the HIC1 exon 1A promoter was observed (17 out of 20, 85%). However, in MCL cell lines without HIC1-hypermethylation, the mRNA expression levels of HIC1 were nevertheless significantly reduced, when compared to reactive lymph node specimens, pointing to the occurrence of mechanisms other than epigenetic or genetic events for the inactivation of HIC1 in this entity.
Cytogenetic chromosome analysis by classical G-banding was supplemented by spectral karyotyping (SKY) in 12 cases of diffuse large B-cell lymphoma (DLBL). SKY is a fluorescence in-situ-based, genome-wide screening technique allowing identification of genetic material even in highly condensed metaphase chromosomes of poor morphology. By simultaneous hybridization of whole chromosome painting probes onto tumor chromosome spreads genetic rearrangements are visualized permitting the clarification of even complex karyotype alterations and the identification of genetic material of previously unknown origin, so-called marker chromosomes. Taking the SKY results into account, we reevaluated the G-banding karyotypes initially carried out, thus generating a more precise karyotype in ten of twelve (83%) cases investigated. In particular, thirteen chromosomal rearrangements not correctly recognized by classical cytogenetics were identified, the genetic origin of seven marker chromosomes was elucidated and three structural genetic rearrangements were redefined. We found SKY to be a valuable technique to establish a definite karyotype in addition to classical cytogenetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.