Exploratory Landscape Analysis (ELA) subsumes a number of techniques employed to obtain knowledge about the properties of an unknown optimization problem, especially insofar as these properties are important for the performance of optimization algorithms. Where in a first attempt, one could rely on high-level features designed by experts, we approach the problem from a different angle here, namely by using relatively cheap low-level computer generated features. Interestingly, very few features are needed to separate the BBOB problem groups and also for relating a problem to high-level, expert designed features, paving the way for automatic algorithm selection.
It has long been observed that for practically any computational problem that has been intensely studied, different instances are best solved using different algorithms. This is particularly pronounced for computationally hard problems, where in most cases, no single algorithm defines the state of the art; instead, there is a set of algorithms with complementary strengths. This performance complementarity can be exploited in various ways, one of which is based on the idea of selecting, from a set of given algorithms, for each problem instance to be solved the one expected to perform best. The task of automatically selecting an algorithm from a given set is known as the per-instance algorithm selection problem and has been intensely studied over the past 15 years, leading to major improvements in the state of the art in solving a growing number of discrete combinatorial problems, including propositional satisfiability and AI planning. Perinstance algorithm selection also shows much promise for boosting performance in solving continuous and mixed discrete/continuous optimisation problems.This survey provides an overview of research in automated algorithm selection, ranging from early and seminal works to recent and promising application areas. Different from earlier work, it covers applications to discrete and continuous problems, and discusses algorithm selection in context with conceptually related approaches, such as algorithm configuration, scheduling or portfolio selection. Since informative and cheaply computable problem instance features provide the basis for effective perinstance algorithm selection systems, we also provide an overview of such features for discrete and continuous problems. Finally, we provide perspectives on future work in the area and discuss a number of open research challenges.
Meta-modeling has become a crucial tool in solving expensive optimization problems. Much of the work in the past has focused on finding a good regression method to model the fitness function. Examples include classical linear regression, splines, neural networks, Kriging and support vector regression. This paper specifically draws attention to the fact that assessing model accuracy is a crucial aspect in the meta-modeling framework. Resampling strategies such as cross-validation, subsampling, bootstrapping, and nested resampling are prominent methods for model validation and are systematically discussed with respect to possible pitfalls, shortcomings, and specific features. A survey of meta-modeling techniques within evolutionary optimization is provided. In addition, practical examples illustrating some of the pitfalls associated with model selection and performance assessment are presented. Finally, recommendations are given for choosing a model validation technique for a particular setting.
In multiobjective optimization, set-based performance indicators are commonly used to assess the quality of a Pareto front approximation. Based on the scalarization obtained by these indicators, a performance comparison of multiobjective optimization algorithms becomes possible. The R2 and the Hypervolume (HV) indicator represent two recommended approaches which have shown a correlated behavior in recent empirical studies. Whereas the HV indicator has been comprehensively analyzed in the last years, almost no studies on the R2 indicator exist. In this paper, we thus perform a comprehensive investigation of the properties of the R2 indicator in a theoretical and empirical way. The influence of the number and distribution of the weight vectors on the optimal distribution of µ s o l u t i o n si sa n a l y z e d . Based on a comparative analysis, specific characteristics and differences of the R2 and HV indicator are presented.
In this paper, we build upon previous work on designing informative and efficient Exploratory Landscape Analysis features for characterizing problems' landscapes and show their effectiveness in automatically constructing algorithm selection models in continuous black-box optimization problems. Focussing on algorithm performance results of the COCO platform of several years, we construct a representative set of high-performing complementary solvers and present an algorithm selection model that -compared to the portfolio's single best solver -on average requires less than half of the resources for solving a given problem. Therefore, there is a huge gain in efficiency compared to classical ensemble methods combined with an increased insight into problem characteristics and algorithm properties by using informative features. Acting on the assumption that the function set of the Black-Box Optimization Benchmark is representative enough for practical applications the model allows for selecting the best suited optimization algorithm within the considered set for unseen problems prior to the optimization itself based on a small sample of function evaluations. Note that such a sample can even be reused for the initial population of an evolutionary (optimization) algorithm so that even the feature costs become negligible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.