The signal recognition particle (SRP) plays a central role in directing the export of nascent proteins from the cytoplasm of mammalian cells. An SRP-dependent translocation machinery in bacteria has not been demonstrated in previous genetic and biochemical studies. Sequence comparisons, however, have identified (i) a gene in Escherichia coli (ffh) whose product is homologous to the 54-kilodalton subunit (SRP54) of SRP, and (ii) an RNA encoded by the ffs gene (4.5S RNA) that shares a conserved domain with the 7SL RNA of SRP. An antiserum to Ffh precipitated 4.5S RNA from E. coli extracts, implying that the two molecules reside in a complex. The 4.5S RNA can also bind to SRP54 and can replace 7SL RNA in an enzymatic assay. The product of a dominant mutation in the ffs gene (4.5S RNAdl1) is also coprecipitated by the antiserum to Ffh protein and is lethal when expressed from an inducible promoter. After induction of 4.5S RNAdl1, the earliest observed phenotype was a permanent induction of the heat shock response, suggesting that there was an accumulation of aberrant proteins in the cytoplasm. Late after induction, translocation of beta-lactamase was impaired; this may be an indirect effect of heat shock, however, because translocation of ribose binding protein or of the porin, OmpA, was unaffected. An unusual separation of the inner and outer membranes, suggestive of a defect in cell envelope, was also observed. Protein synthesis did not cease until very late, an indication that 4.5S RNA probably does not have a direct role in this process.
Metaphase chromosome alignment is a key step of animal cell mitosis. The molecular mechanism leading to this equatorial positioning is still not fully understood. Forces exerted at kinetochores and on chromosome arms drive chromosome movements that culminate in their alignment on the metaphase plate. In this paper, we show that Xkid, a kinesin-like protein localized on chromosome arms, plays an essential role in metaphase chromosome alignment and in its maintenance. We propose that Xkid is responsible for the polar ejection forces acting on chromosome arms. Our results show that these forces are essential to ensure that kinetochores and chromosome arms align on a narrow equatorial plate during metaphase, a prerequisite for proper chromosome segregation.
The signal recognition particle (SRP) consists of one RNA and six protein subunits. The N-terminal domain of the 54K subunit contains a putative GTP-binding site, whereas the C-terminal domain binds signal sequences and SRP RNA. Binding of SRP to the signal sequence as it emerges from the ribosome creates a cytosolic targeting complex containing the nascent polypeptide chain, the translating ribosome, and SRP. This complex is directed to the endoplasmic reticulum membrane as a result of its interaction with the SRP receptor, a membrane protein composed of two subunits, SR alpha and SR beta, each of which also contains a GTP-binding domain. In the presence of GTP, SRP receptor binding to SRP causes the latter to dissociate from both the signal sequence and the ribosome. GTP is then hydrolysed so that SRP can be released from the SRP receptor and returned to the cytosol. Here we show that the 54K subunit (M(r) 54,000) of SRP (SRP54) is a GTP-binding protein stabilized in a nucleotide-free state by signal sequences, and that the SRP receptor both increases the affinity of SRP54 for GTP and activates its GTPase. We propose that nucleotide-mediated conformational changes in SRP54 regulate the release of signal sequences and the docking of ribosomes at the endoplasmic reticulum.
Recent advances in cancer biology have emerged important roles for microRNAs (miRNAs) in regulating tumor responses. However, their function in mediating intercellular communication within the tumor microenvironment is thus far poorly explored. Here, we found miR-206 to be abrogated in human pancreatic ductal adenocarcinoma (PDAC) specimens and cell lines. We show that miR-206 directly targets the oncogenes KRAS and annexin a2 (ANXA2), thereby acting as tumor suppressor in PDAC cells by blocking cell cycle progression, cell proliferation, migration and invasion. Importantly, we identified miR-206 as a negative regulator of oncogenic KRAS-induced nuclear factor-κB transcriptional activity, resulting in a concomitant reduction of the expression and secretion of pro-angiogenic and pro-inflammatory factors including the cytokine interleukin-8, the chemokines (C-X-C motif) ligand 1 and (C–C motif) ligand 2, and the granulocyte macrophage colony-stimulating factor. We further show that miR-206 abrogates the expression and secretion of the potent pro-lymphangiogenic factor vascular endothelial growth factor C in pancreatic cancer cells through an NF-κB-independent mechanism. By using in vitro and in vivo approaches, we reveal that re-expression of miR-206 in PDAC cells is sufficient to inhibit tumor blood and lymphatic vessel formation, thus leading to a significant delay of tumor growth and progression. Taken together, our study sheds light onto the role of miR-206 as a pleiotropic modulator of different hallmarks of cancer, and as such raising the intriguing possibility that miR-206 may be an attractive candidate for miRNA-based anticancer therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.