Coronary calcification is a potent predictor of cardiac events. In patients with chronic renal disease, both prevalence and intensity of coronary calcification are increased. It has remained uncertain whether it is the intima of the coronaries or the media that is calcified and whether the morphologic details of calcified plaques differ between renal and nonrenal patients. Autopsy samples of coronaries were obtained from standard sites in 23 renal and 23 age- and gender-matched nonuremic patients. Specimens were examined using light and electron microscopy, immunohistochemistry, backscatter imaging, and x-ray analysis. In coronaries, calcified plaques occupied a similar proportion of the intima area in renal versus nonrenal patients (17.3 +/- 11.9 versus 18.1 +/- 11.9%) but occupied a significantly higher proportion of the media (16.6 +/- 10.6 versus 3.8 +/- 2.31%). Expression of the proteins osteocalcin, C-reactive protein, TGF-beta, and collagen IV was significantly more intensive around coronary plaques of renal compared with nonrenal patients. The non-plaque-bearing intima of renal patients showed minimal staining for fetuin, but fetuin staining was seen surrounding calcified plaques. In addition, more pronounced deposition of C5b-9 was found around coronary plaques of renal patients, and glycophorin deposition pointed to more past intraplaque hemorrhage in renal patients. Calcification by electron backscatter analysis is more intense in the coronary media, but not if the intima is more intense in renal compared with nonrenal patients. A more marked inflammatory response in renal patients is suggested by more frequent presence and greater intensity of markers of inflammation.
The axolotl kidney provides a novel in vivo model to study tubulointerstitial activation and induction of interstitial fibrosis by protein loading. The findings are independent of alterations of glomerular function that may have potential confounding effects on peritubular hemodynamics, pO2, cell traffic, etc.
Diabetic nephropathy is the leading cause of end-stage renal disease. Dopamine receptors are involved in the regulation of renal hemodynamics and may play a role in diabetes-induced hyperfiltration. To test this hypothesis, we investigated the renal effect of a dopamine D3 receptor antagonist (D3-RA) in hypertensive type II diabetic SHR/N-cp rats. Lean and obese SHR/N-cp rats were randomly assigned to D3-RA, angiotensinconverting enzyme inhibitor (ACE-i), or D3-RA þ ACE-i treatment or control conditions. Treated animals were given the D3-RA A-437203 (10 mg/kg/body weight (BW)/day) or the ACE-i trandolapril (0.3 mg/kg BW/day) or a combination of both. At 6 months following perfusion, fixed kidneys were analyzed by morphological and stereological methods. Indices of renal damage (glomerulosclerosis, glomerulosclerosis damage index (GSI), tubulointerstitial and vascular damage), glomerular geometry and functional variables such as urinary albumin excretion, glomerular filtration rate, blood pressure, blood chemistry and BW were determined. The GSI (score 0-4) was significantly higher (Po0.05) in untreated diabetic animals (1.6270.3) compared to nondiabetic controls (0.470.2) and the treatment groups (D3-RA: 0.3170.12; ACE-i: 0.2970.1; combination treatment: 0.1270.01). Urinary albumin excretion (mg/24 h) was higher in untreated diabetic controls (102719) compared to nondiabetic controls (31712) and the treatment groups (D3-RA: 44715; ACE-i: 41713; combination treatment: 1578). Mean glomerular volume was higher in untreated diabetic animals compared to nondiabetic controls and to the treatment groups. Desmin expression, a marker of podocyte damage, was elevated in untreated diabetic controls and diminished in all treatment groups. These data suggest that in a model of type II diabetes, the dopamine D3-RA had a beneficial effect on renal morphology and albuminuria, which was comparable in magnitude to that of ACE-i treatment.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.