If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.
Abstract-TV White Spaces technology is a means of allowing wireless devices to opportunistically use locally-available TV channels (TV White Spaces), enabled by a geolocation database. The geolocation database informs the device of which channels can be used at a given location, and in the UK/EU case, which transmission powers (EIRPs) can be used on each channel based on the technical characteristics of the device, given an assumed interference limit and protection margin at the edge of the primary service coverage area(s). The UK regulator, Ofcom, has initiated a large-scale Pilot of TV White Spaces technology and devices. The ICT-ACROPOLIS Network of Excellence, teaming up with the ICT-SOLDER project and others, is running an extensive series of trials under this effort. The purpose of these trials is to test a number of aspects of white space technology, including the white space device and geolocation database interactions, the validity of the channel availability/powers calculations by the database and associated interference effects on primary services, and the performances of the white spaces devices, among others. An additional key purpose is to undertake a number of research investigations such as into aggregation of TV White Space resources with conventional (licensed/unlicensed) resources, secondary coexistence issues and means to mitigate such issues, and primary coexistence issues under challenging deployment geometries, among others. This paper describes our trials, their intentions and characteristics, objectives, and some early observations.
This paper presents a demonstration of the new Licensed Shared Access (LSA) concept using a TD-LTE access network in the 2.3 GHz spectrum band in Finland. In the demonstrated trial, the TD-LTE network shares the spectrum of an incumbent spectrum user, who is focused on programme making and special events (PMSE) services. The demonstrator implements the new LSA concept and the required new building blocks including LSA Repository for spectrum protection information and LSA Controller for controlling the mobile communication network in the same band. The trial uses commercial network components like multiband-terminals, TD-LTE base stations, network management system, and core network. Spectrum usage data of incumbents is collected to LSA Repository using two incumbent user tools and is actively updated to LSA Controller for radio network planning to protect the incumbent's activity in the area. LSA Controller uses the information from the base stations and incumbents to protect incumbent spectrum users' rights. This is demonstrated by providing different algorithms, which analyze base stations and sectors that need to be reconfigured to prevent interference from LTE to incumbent (and vice versa). The demonstration shows that the new LSA concept can be implemented with existing network elements and a minimum amount of new components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.