Fractional Brownian motion can be represented as an integral of a deterministic kernel w.r.t. an ordinary Brownian motion either on infinite or compact interval. In previous literature fractional Lévy processes are defined by integrating the infinite interval kernel w.r.t. a general Lévy process. In this article we define fractional Lévy processes using the com pact interval representation.We prove that the fractional Lévy processes presented via different integral transformations have the same finite dimensional distributions if and only if they are fractional Brownian motions. Also, we present relations between different fractional Lévy processes and analyze the properties of such processes. A financial example is introduced as well.
We prove change of variables formulas [Itô formulas] for functions of both arithmetic and geometric averages of geometric fractional Brownian motion. They are valid for all convex functions, not only for smooth ones. These change of variables formulas provide us integral representations of functions of average in the sense of generalized Lebesgue-Stieltjes integral.
a b s t r a c tIf we compose a smooth function g with fractional Brownian motion B with Hurst index H > 1 2 , then the resulting change of variables formula (or Itô formula) has the same form as if fractional Brownian motion was a continuous function with bounded variation. In this note we prove a new integral representation formula for the running maximum of a continuous function with bounded variation. Moreover we show that the analogy to fractional Brownian motion fails.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.